1,646 research outputs found
Field-Induced Quasiparticle Excitation in Ca(AlSi): Evidence for unconventional Superconductivity
The temperature () and magnetic field () dependence of the magnetic
penetration depth, , in Ca(AlSi) exhibits
significant deviation from that expected for conventional BCS superconductors.
In particular, it is inferred from a field dependence of () at 2.0 K that the quasiparticle excitation is strongly enhanced by the
Doppler shift. This suggests that the superconducting order parameter in
Ca(AlSi) is characterized by a small energy scale
K originating either from anisotropy or multi-gap
structure.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp
High spectral resolution observations of HNC3 and HCCNC in the L1544 prestellar core
HCCNC and HNC3 are less commonly found isomers of cyanoacetylene, HC3N, a
molecule that is widely found in diverse astronomical sources. We want to know
if HNC3 is present in sources other than the dark cloud TMC-1 and how its
abundance is relative to that of related molecules. We used the ASAI unbiased
spectral survey at IRAM 30m towards the prototypical prestellar core L1544 to
search for HNC3 and HCCNC which are by-product of the HC3NH+ recombination,
previously detected in this source. We performed a combined analysis of
published HNC3 microwave rest frequencies with thus far unpublished millimeter
data because of issues with available rest frequency predictions. We determined
new spectroscopic parameters for HNC3, produced new predictions and detected it
towards L1544. We used a gas-grain chemical modelling to predict the abundances
of N-species and compare with the observations. The modelled abundances are
consistent with the observations, considering a late stage of the evolution of
the prestellar core. However the calculated abundance of HNC3 was found 5-10
times higher than the observed one. The HC3N, HNC3 and HCCNC versus HC3NH+
ratios are compared in the TMC-1 dark cloud and the L1544 prestellar core.Comment: Accepted in MNRAS letters. 5 pages plus 2 additional pages for the
on-line materia
Recommended from our members
New detections of isotopic molecular absorption lines: a low <sup>12</sup>C:<sup>13</sup>C ratio in nearby gas
Molecular absorption line observations towards the background source Sgr B2 `M' are presented. Previous observations have shown that there are ~9 foreground clouds of moderate density along this line of sight, which produce absorption lines that are well spaced in velocity. In two of these clouds, first detections have now been made of the rare isotopomers 12CS, HN13C, HC15N and HC18O+. For a feature at lsr velocities of -4 to +18km s-1, the isotopic ratio 12C:13C has been estimated, from the relative intensities of 12CS and 13CS J=1-0 lines, and also by comparing the strength of the 13CS line with that of C34S J=1-0 observed previously. A convergent solution for the two methods is found if 12CS is optically thick but the isotopomer lines are optically thin. In this case 12C:13C is 24±11, which is surprisingly low if the gas lies near the Sun, as indicated by its velocity. However, it has been suggested that parts of this feature may in fact arise in hot gas close to the Sgr B2 cloud, where a low isotope ratio is expected. If this region of the line is excluded, the 12C:13C ratio for the remaining lsr velocities of +11 to +18kms-1 is only slightly changed, with a value of 22±13. This is the true carbon isotope ratio in some nearby gas, if effects such as peculiar velocities and isotopic fractionation are unimportant. The value found here is well below the local average of ~60-70 in the solar neighbourhood, which suggests that some of the nearby absorbing gas has been recently isotopically enriched by stellar ejecta. This moderate density absorbing gas is then more likely to be material left over after star-formation, rather than a pre-star-for
Recommended from our members
Observations of five molecular species in absorption towards Sagittarius B2
Seven diffuse molecular clouds have been detected in absorption, using the Sgr B2 star-formation region was used as a source of background continuum emission. Transitions were observed at frequencies around 49, 85 and 98 GHz, from CS, C34S, H13CN, H13CO+, SiO and C3H2. Clouds detected in absorption include the "nuclear disk", the 3 kpc expanding arm, spiral arms in the Galactic Plane, and two unidentified regions. The nuclear disk line profile was found to be inconsistent with homogeneous disk or bar models, instead suggesting irregular perturbations of the gas within a few hundred pc of the Galactic Centre.
Absorption in CS was detected in two different rotational transitions, leading to reliable estimates of the physical parameters of the clouds. In particular, exitation temperaturers could be estimated, instead of assumed values being used, as was the case in previous studies. Results from an LTE analysis and from LVG modelling show that the absorption lines are mostly optically thin, with molecular column densities ~1012-14cm-2 per cloud. Excitation temperatures as high as 5K were found, inconsistent with heating by the 2.7K cosmic background radiation alone. Cloud densities were estimated at nH2~104cm-3, or less if the gas is highly subthermalised
Nonlocal Effects and Shrinkage of the Vortex Core Radius in YNi2B2C Probed by muSR
The magnetic field distribution in the vortex state of YNi2B2C has been
probed by muon spin rotation (muSR). The analysis based on the London model
with nonlocal corrections shows that the vortex lattice has changed from
hexagonal to square with increasing magnetic field H. At low fields the vortex
core radius, rho_v(H), decreases with increasing H much steeper than what is
expected from the sqrt(H) behavior of the Sommerfeld constant gamma(H),
strongly suggesting that the anomaly in gamma(H) primarily arises from the
quasiparticle excitations outside the vortex cores.Comment: 4 pages, 4 figures, submitted to Phys. Rev.
Observation of the first gravitational microlensing event in a sparse stellar field : the Tago event
We report the observation of the first gravitational microlensing event in a
sparse stellar field, involving the brightest (V=11.4 mag) andclosest (~ 1 kpc)
source star to date. This event was discovered by an amateurastronomer, A.
Tago, on 2006 October 31 as a transient brightening, by ~4.5 mag during a ~15
day period, of a normal A-type star (GSC 3656-1328) in the Cassiopeia
constellation. Analysis of both spectroscopic observations and the light curve
indicates that this event was caused by gravitational microlensing rather than
an intrinsically variable star. Discovery of this single event over a 30 year
period is roughly consistent with the expected microlensing rate for the whole
sky down to V = 12 mag stars. However, the probability for finding events with
such a high magnification (~ 50) is much smaller, by a factor ~1/50, which
implies that the true event rate may be higher than expected. This discovery
indicates the potential of all sky variability surveys, employing frequent
sampling by telescopes with small apertures and wide fields of view, for
finding such rare transient events, and using the observations to explore
galactic disk structure and search for exo-planets.Comment: 13 pages, 2 tables, 3 figures, accepted by Ap
Muonium as a shallow center in GaN
A paramagnetic muonium (Mu) state with an extremely small hyperfine parameter
was observed for the first time in single-crystalline GaN below 25 K. It has a
highly anisotropic hyperfine structure with axial symmetry along the [0001]
direction, suggesting that it is located either at a nitrogen-antibonding or a
bond-centered site oriented parallel to the c-axis. Its small ionization energy
(=< 14 meV) and small hyperfine parameter (--10^{-4} times the vacuum value)
indicate that muonium in one of its possible sites produces a shallow state,
raising the possibility that the analogous hydrogen center could be a source of
n-type conductivity in as-grown GaN.Comment: 4 figures, to be published in Phys. Rev. Letter
- …