193 research outputs found

    SPH calculations of asteroid disruptions: The role of pressure dependent failure models

    Get PDF
    We present recent improvements of the modeling of the disruption of strength dominated bodies using the Smooth Particle Hydrodynamics (SPH) technique. The improvements include an updated strength model and a friction model, which are successfully tested by a comparison with laboratory experiments. In the modeling of catastrophic disruptions of asteroids, a comparison between old and new strength models shows no significant deviation in the case of targets which are initially non-porous, fully intact and have a homogeneous structure (such as the targets used in the study by Benz&Asphaug (1999). However, for many cases (e.g. initially partly or fully damaged targets, rubble-pile structures, etc.) we find that it is crucial that friction is taken into account and the material has a pressure dependent shear strength. Our investigations of the catastrophic disruption threshold QD∗Q^*_{D} as a function of target properties and target sizes up to a few 100 km show that a fully damaged target modeled without friction has a QD∗Q^*_{D} which is significantly (5-10 times) smaller than in the case where friction is included. When the effect of the energy dissipation due to compaction (pore crushing) is taken into account as well, the targets become even stronger (QD∗Q^*_{D} is increased by a factor of 2-3). On the other hand, cohesion is found to have an negligible effect at large scales and is only important at scales ≲\lesssim 1km. Our results show the relative effects of strength, friction and porosity on the outcome of collisions among small (≲\lesssim 1000 km) bodies. These results will be used in a future study to improve existing scaling laws for the outcome of collisions (e.g. Leinhardt&Stewart, 2012).Comment: Accepted for publication in Planetary and Space Scienc

    SPH calculations of Mars-scale collisions: the role of the Equation of State, material rheologies, and numerical effects

    Get PDF
    We model large-scale (≈\approx2000km) impacts on a Mars-like planet using a Smoothed Particle Hydrodynamics code. The effects of material strength and of using different Equations of State on the post-impact material and temperature distributions are investigated. The properties of the ejected material in terms of escaping and disc mass are analysed as well. We also study potential numerical effects in the context of density discontinuities and rigid body rotation. We find that in the large-scale collision regime considered here (with impact velocities of 4km/s), the effect of material strength is substantial for the post-impact distribution of the temperature and the impactor material, while the influence of the Equation of State is more subtle and present only at very high temperatures.Comment: 24 pages, 11 figures; accepted for publication in Icaru

    Global Scale Impacts

    Full text link
    Global scale impacts modify the physical or thermal state of a substantial fraction of a target asteroid. Specific effects include accretion, family formation, reshaping, mixing and layering, shock and frictional heating, fragmentation, material compaction, dilatation, stripping of mantle and crust, and seismic degradation. Deciphering the complicated record of global scale impacts, in asteroids and meteorites, will lead us to understand the original planet-forming process and its resultant populations, and their evolution in time as collisions became faster and fewer. We provide a brief overview of these ideas, and an introduction to models.Comment: A chapter for Asteroids IV, a new volume in the Space Science Series, University of Arizona Press (Patrick Michel, Francesca E. DeMeo, William F. Bottke, Eds.

    Modeling asteroid collisions and impact processes

    Full text link
    As a complement to experimental and theoretical approaches, numerical modeling has become an important component to study asteroid collisions and impact processes. In the last decade, there have been significant advances in both computational resources and numerical methods. We discuss the present state-of-the-art numerical methods and material models used in "shock physics codes" to simulate impacts and collisions and give some examples of those codes. Finally, recent modeling studies are presented, focussing on the effects of various material properties and target structures on the outcome of a collision.Comment: Chapter to appear in the Space Science Series Book: Asteroids IV. Includes minor correction

    Small-body deflection techniques using spacecraft: techniques in simulating the fate of ejecta

    Get PDF
    We define a set of procedures to numerically study the fate of ejecta produced by the impact of an artificial projectile with the aim of deflecting an asteroid. Here we develop a simplified, idealized model of impact conditions that can be adapted to fit the details of specific deflection-test scenarios, such as what is being proposed for the AIDA project. Ongoing studies based upon the methodology described here can be used to inform observational strategies and safety conditions for an observing spacecraft. To account for ejecta evolution, the numerical strategies we are employing are varied and include a large N-Body component, a smoothed-particle hydrodynamics (SPH) component, and an application of impactor scaling laws. Simulations that use SPH-derived initial conditions show high-speed ejecta escaping at low angles of inclination, and very slowly moving ejecta lofting off the surface at higher inclination angles, some of which re-impacts the small-body surface. We are currently investigating the realism of this and other models' behaviors. Next steps will include the addition of solar perturbations to the model and applying the protocol developed here directly to specific potential mission concepts such as the proposed AIDA scenario.Comment: 19 pages, 11 figures, accepted for publication in Advances in Space Research, Special Issue: Asteroids & Space Debri

    Collision and impact simulations including porosity

    Get PDF
    The Smooth Particle Hydrodynamics (SPH) impact code (Benz & Asphaug 1994) has been developed for the simulation of impacts and collisions involving brittle solids in the strength-and gravity-dominated regime. In the latter regime, the gravitational overburden is used to increase the fracture threshold. In this paper, we extend our numerical approach to include the effect of porosity at a sub-resolution scale by adapting the so-called P -α model (Herrman 1969). Using our extended 3D SPH impact code, we investigated collisions between porous bodies to examine the sensitivity of collisional outcomes to the degree of porosity. Two applications that illustrate the capabilities of our approach are shown: 1) the modeling of a Deep Impact-like impact and 2) the computation of the amount of momentum transferred to an asteroid following the impact of a high velocity projectil

    Modification of icy planetesimals by early thermal evolution and collisions: Constraints for formation time and initial size of comets and small KBOs

    Full text link
    Comets and small Kuiper belt objects are considered to be among the most primitive objects in the solar system as comets like C/1995 O1 Hale-Bopp are rich in highly volatile ices like CO. It has been suggested that early in the solar system evolution the precursors of both groups, the so-called icy planetesimals, were modified by both short-lived radiogenic heating and collisional heating. Here we employ 2D finite-difference numerical models to study the internal thermal evolution of these objects, where we vary formation time, radius and rock-to-ice mass fraction. Additionally we perform 3D SPH collision models with different impact parameters, thus considering both cratering and catastrophic disruption events. Combining the results of both numerical models we estimate under which conditions highly volatile ices like CO, CO2 and NH3 can be retained inside present-day comets and Kuiper belt objects. Our results indicate that for present-day objects derived from the largest post-collision remnant the internal thermal evolution controls the amount of remaining highly volatile ices, while for the objects formed from unbound post-collision material the impact heating is dominant. Finally we apply our results to present-day comets and Kuiper belt objects like 67P/Churyumov-Gerasimenko, C/1995 O1 Hale-Bopp and (486958) Arrokoth

    Relevance of Tidal Heating on Large TNOs

    Full text link
    We examine the relevance of tidal heating for large Trans-Neptunian Objects, with a focus on its potential to melt and maintain layers of subsurface liquid water. Depending on their past orbital evolution, tidal heating may be an important part of the heat budget for a number of discovered and hypothetical TNO systems and may enable formation of, and increased access to, subsurface liquid water. Tidal heating induced by the process of despinning is found to be particularly able to compete with heating due to radionuclide decay in a number of different scenarios. In cases where radiogenic heating alone may establish subsurface conditions for liquid water, we focus on the extent by which tidal activity lifts the depth of such conditions closer to the surface. While it is common for strong tidal heating and long lived tides to be mutually exclusive, we find this is not always the case, and highlight when these two traits occur together.Comment: Submitted to Icaru

    Collisional Formation and Modeling of Asteroid Families

    Full text link
    In the last decade, thanks to the development of sophisticated numerical codes, major breakthroughs have been achieved in our understanding of the formation of asteroid families by catastrophic disruption of large parent bodies. In this review, we describe numerical simulations of asteroid collisions that reproduced the main properties of families, accounting for both the fragmentation of an asteroid at the time of impact and the subsequent gravitational interactions of the generated fragments. The simulations demonstrate that the catastrophic disruption of bodies larger than a few hundred meters in diameter leads to the formation of large aggregates due to gravitational reaccumulation of smaller fragments, which helps explain the presence of large members within asteroid families. Thus, for the first time, numerical simulations successfully reproduced the sizes and ejection velocities of members of representative families. Moreover, the simulations provide constraints on the family dynamical histories and on the possible internal structure of family members and their parent bodies.Comment: Chapter to appear in the (University of Arizona Press) Space Science Series Book: Asteroids I
    • …
    corecore