219 research outputs found
Populism and political ideologies in comparative perspective
The rise of populism worldwide necessitates a deeper understanding of this phenomenon. My doctoral dissertation, grounded in the ideational approach, dissects populism into two elements, investigating how this 'thin' ideology of people-centrism and anti-elitism cohabits with various robust ideologies. In essence, when populism, as a thin ideology, coexists with more substantive ideologies, what nature does this cohabitation take, and how does it manifest? My dissertation endeavors to answer this question through three distinct papers that explore this common inquiry. The first study examines populism in its pure form as a thin ideology. Using the less-studied case of South Korea in a comparative lens, the research delves into the amalgamation of populism and political sectarianism. It explores how populism, when not predominantly associated with economic grievances or surges in immigration, simplistically aligns with political sectarianism. This investigation highlights the versatility of populism and emphasizes the need for regional research in comparative politics, even in areas not typically considered hotbeds of populism. The second study shifts the focus to the demand side of populism at the individual level and investigates what robust ideology cohabits with populist attitudes. Focusing on the case of the United States through original survey data, I find that populist attitudes are predominantly correlated with right-wing issues, exhibiting a weaker correlation with left-wing issues in the United States. This finding offers insights into the nature of ideological cohabitation in the context of American populism. In the third study, the analysis expands to a cross-national perspective, examining the relationship between populist attitudes and ideologies across various global contexts. Utilizing data from the fifth wave of the Comparative Study of Electoral Systems, which includes 43 countries and 52 elections, this study explores how this relationship unfolds on a global scale and finds that the relationship between political ideology and populist attitudes is non-linear, meaning both extreme left and right present a high level of populist attitudes. Employing a range of rigorous methodological models, including the Generalized Additive Model, the paper provides a thorough understanding of the interplay between populist attitudes and ideological orientations. In conclusion, the dissertation comprehensively analyzes the cases of populism existing in a) its pure form as a thin ideology, b) cohabiting with right-wing ideologies, and c) its manifestation at the extremes of the ideological spectrum, both left and right, cross-nationally. Through this, the dissertation provides a comparative political perspective on the relationship between populism and political ideologies, examining both the demand and supply sides of populism.Includes bibliographical references
Quantitative Screening of Cervical Cancers for Low-Resource Settings: Pilot Study of Smartphone-Based Endoscopic Visual Inspection After Acetic Acid Using Machine Learning Techniques
Background: Approximately 90% of global cervical cancer (CC) is mostly found in low- and middle-income countries. In most cases, CC can be detected early through routine screening programs, including a cytology-based test. However, it is logistically difficult to offer this program in low-resource settings due to limited resources and infrastructure, and few trained experts. A visual inspection following the application of acetic acid (VIA) has been widely promoted and is routinely recommended as a viable form of CC screening in resource-constrained countries. Digital images of the cervix have been acquired during VIA procedure with better quality assurance and visualization, leading to higher diagnostic accuracy and reduction of the variability of detection rate. However, a colposcope is bulky, expensive, electricity-dependent, and needs routine maintenance, and to confirm the grade of abnormality through its images, a specialist must be present. Recently, smartphone-based imaging systems have made a significant impact on the practice of medicine by offering a cost-effective, rapid, and noninvasive method of evaluation. Furthermore, computer-aided analyses, including image processing-based methods and machine learning techniques, have also shown great potential for a high impact on medicinal evaluations
The role of motivation factors in exergame interventions for fall prevention in older adults: A systematic review and meta-analysis
Balance disorders and falls are common in the elderly population. Regular balance exercises are an evidence-based physical intervention to prevent falls in older adults, while patient motivation and adherence are important factors for intervention outcome. Exergames are a relatively new, alternative intervention for physical rehabilitation as they improve balance and strength in older adults. The aims of this systematic review and meta-analysis were to assess the (1) effect of motivation factors as per the Capability, Opportunity and Motivation model of Behavior change (COM-B) on the effectiveness of exergame interventions in healthy older adults, (2) effectiveness of exergames to improve balance in older healthy adults and, (3) impact of exergames on cognitive outcomes. Results show that motivation and capability components influence the general outcome of the exergame training. Motivational factors should thus be considered when setting-up an exergame intervention. Furthermore, exergame intervention appears to be a promising training method in comparison to traditional exercise training. However, exergame training in itself might not be sufficient to improve fall risk and cognitive performance
Lamellar keratoplasty using position-guided surgical needle and M-mode optical coherence tomography
Deep anterior lamellar keratoplasty (DALK) is an emerging surgical technique for the restoration of corneal clarity and vision acuity. The big-bubble technique in DALK surgery is the most essential procedure that includes the air injection through a thin syringe needle to separate the dysfunctional region of the cornea. Even though DALK is a well-known transplant method, it is still challenged to manipulate the needle inside the cornea under the surgical microscope, which varies its surgical yield. Here, we introduce the DALK protocol based on the position-guided needle and M-mode optical coherence tomography (OCT). Depth-resolved 26-gage needle was specially designed, fabricated by the stepwise transitional core fiber, and integrated with the swept source OCT system. Since our device is feasible to provide both the position information inside the cornea as well as air injection, it enables the accurate management of bubble formation during DALK. Our results show that real-time feedback of needle end position was intuitionally visualized and fast enough to adjust the location of the needle. Through our research, we realized that position-guided needle combined with M-mode OCT is a very efficient and promising surgical tool, which also to enhance the accuracy and stability of DALK
Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex
Focused ultrasound (FUS) has recently been investigated as a new mode of non-invasive brain stimulation, which offers exquisite spatial resolution and depth control. We report on the elicitation of explicit somatosensory sensations as well as accompanying evoked electroencephalographic (EEG) potentials induced by FUS stimulation of the human somatosensory cortex. As guided by individual-specific neuroimage data, FUS was transcranially delivered to the hand somatosensory cortex among healthy volunteers. The sonication elicited transient tactile sensations on the hand area contralateral to the sonicated hemisphere, with anatomical specificity of up to a finger, while EEG recordings revealed the elicitation of sonication-specific evoked potentials. Retrospective numerical simulation of the acoustic propagation through the skull showed that a threshold of acoustic intensity may exist for successful cortical stimulation. The neurological and neuroradiological assessment before and after the sonication, along with strict safety considerations through the individual-specific estimation of effective acoustic intensity in situ and thermal effects, showed promising initial safety profile; however, equal/more rigorous precautionary procedures are advised for future studies. The transient and localized stimulation of the brain using image-guided transcranial FUS may serve as a novel tool for the non-invasive assessment and modification of region-specific brain functionopen43
Modeling Anti-HIV-1 HSPC-Based Gene Therapy in Humanized Mice Previously Infected with HIV-1.
Investigations of anti-HIV-1 human hematopoietic stem/progenitor cell (HSPC)-based gene therapy have been performed by HIV-1 challenge after the engraftment of gene-modified HSPCs in humanized mouse models. However, the clinical application of gene therapy is to treat HIV-1-infected patients. Here, we developed a new method to investigate an anti-HIV-1 HSPC-based gene therapy in humanized mice previously infected with HIV-1. First, humanized mice were infected with HIV-1. When plasma viremia reached >107 copies/mL 3 weeks after HIV-1 infection, the mice were myeloablated with busulfan and transplanted with anti-HIV-1 gene-modified CD34+ HSPCs transduced with a lentiviral vector expressing two short hairpin RNAs (shRNAs) against CCR5 and HIV-1 long terminal repeat (LTR), along with human thymus tissue under the kidney capsule. Anti-HIV-1 vector-modified human CD34+ HSPCs successfully repopulated peripheral blood and lymphoid tissues in HIV-1 previously infected humanized mice. Anti-HIV-1 shRNA vector-modified CD4+ T lymphocytes showed selective advantage in HIV-1 previously infected humanized mice. This new method will be useful for investigations of anti-HIV-1 gene therapy when testing in a more clinically relevant experimental setting
Recommended from our members
Evaluation of simulated O-3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea
We examine O3 production and its sensitivity to precursor gases and boundary layer mixing in Korea by using a 3-D global chemistry transport model and extensive observations during the KORea-US cooperative Air Quality field study in Korea, which occurred in May–June 2016. During the campaign, observed aromatic species onboard the NASA DC-8 aircraft, especially toluene, showed high mixing ratios of up to 10 ppbv, emphasizing the importance of aromatic chemistry in O3 production. To examine the role of VOCs and NOx in O3 chemistry, we first implement a detailed aromatic chemistry scheme in the model, which reduces the normalized mean bias of simulated O3 mixing ratios from –26% to –13%. Aromatic chemistry also increases the average net O3 production in Korea by 37%. Corrections of daytime PBL heights, which are overestimated in the model compared to lidar observations, increase the net O3 production rate by ~10%. In addition, increasing NOx emissions by 50% in the model shows best performance in reproducing O3 production characteristics, which implies that NOx emissions are underestimated in the current emissions inventory. Sensitivity tests show that a 30% decrease in anthropogenic NOx emissions in Korea increases the O3 production efficiency throughout the country, making rural regions ~2 times more efficient in producing O3 per NOx consumed. Simulated O3 levels overall decrease in the peninsula except for urban and other industrial areas, with the largest increase (~6 ppbv) in the Seoul Metropolitan Area (SMA). However, with simultaneous reductions in both NOx and VOCs emissions by 30%, O3 decreases in most of the country, including the SMA. This implies the importance of concurrent emission reductions for both NOx and VOCs in order to effectively reduce O3 levels in Korea
A Design of Wireless Sensor Networks for a Power Quality Monitoring System
Power grids deal with the business of generation, transmission, and distribution of electric power. Recently, interest in power quality in electrical distribution systems has increased rapidly. In Korea, the communication network to deliver voltage, current, and temperature measurements gathered from pole transformers to remote monitoring centers employs cellular mobile technology. Due to high cost of the cellular mobile technology, power quality monitoring measurements are limited and data gathering intervals are large. This causes difficulties in providing the power quality monitoring service. To alleviate the problems, in this paper we present a communication infrastructure to provide low cost, reliable data delivery. The communication infrastructure consists of wired connections between substations and monitoring centers, and wireless connections between pole transformers and substations. For the wireless connection, we employ a wireless sensor network and design its corresponding data forwarding protocol to improve the quality of data delivery. For the design, we adopt a tree-based data forwarding protocol in order to customize the distribution pattern of the power quality information. We verify the performance of the proposed data forwarding protocol quantitatively using the NS-2 network simulator
A Reliable Data Delivery Mechanism for Grid Power Quality Using Neural Networks in Wireless Sensor Networks
Power grids deal with the business of generation, transmission, and distribution of electric power. Current systems monitor basic electrical quantities such as voltage and current from major pole transformers using their temperature. We improve the current systems in order to gather and deliver the information of power qualities such as harmonics, voltage sags, and voltage swells. In the system, data delivery is not guaranteed for the case that a node is lost or the network is congested, because the system has in-line and multi-hop architecture. In this paper, we propose a reliable data delivery mechanism by modeling an optimal data delivery function by employing the neural network concept
The Howl - Fall 2017
The Howl is a magazine that is planned, researched, written, photographed and designed by Otterbein University\u27s ESL and international students. The magazine serves to give them a safe space in which to use their voice to share their cultures, experiences and lives. If you are interested in submitting to The Howl, please email your writing or photography to [email protected]://digitalcommons.otterbein.edu/the_howl/1003/thumbnail.jp
- …