263 research outputs found
The competition number of a graph and the dimension of its hole space
The competition graph of a digraph D is a (simple undirected) graph which has
the same vertex set as D and has an edge between x and y if and only if there
exists a vertex v in D such that (x,v) and (y,v) are arcs of D. For any graph
G, G together with sufficiently many isolated vertices is the competition graph
of some acyclic digraph. The competition number k(G) of G is the smallest
number of such isolated vertices. In general, it is hard to compute the
competition number k(G) for a graph G and it has been one of important research
problems in the study of competition graphs to characterize a graph by its
competition number. Recently, the relationship between the competition number
and the number of holes of a graph is being studied. A hole of a graph is a
cycle of length at least 4 as an induced subgraph. In this paper, we conjecture
that the dimension of the hole space of a graph is no smaller than the
competition number of the graph. We verify this conjecture for various kinds of
graphs and show that our conjectured inequality is indeed an equality for
connected triangle-free graphs.Comment: 6 pages, 3 figure
Single- and Multiple-Junction p-i-n Type Amorphous Silicon Solar Cells with p-a-Si1-xCx:H and nc-Si:H Films
Isolated Double-Chambered Right Ventricle in a Young Adult
Double-chambered right ventricle (DCRV) is a rare congenital heart disorder in which the right ventricle is divided by an anomalous muscle bundle into a high pressure inlet portion and a low pressure outlet portion. We report a case of isolated DCRV without symptoms in adulthood, diagnosed through echocardiography, cardiac catheterization and cardiac magnetic resonance imaging
Competitively tight graphs
The competition graph of a digraph is a (simple undirected) graph which
has the same vertex set as and has an edge between two distinct vertices
and if and only if there exists a vertex in such that
and are arcs of . For any graph , together with sufficiently
many isolated vertices is the competition graph of some acyclic digraph. The
competition number of a graph is the smallest number of such
isolated vertices. Computing the competition number of a graph is an NP-hard
problem in general and has been one of the important research problems in the
study of competition graphs. Opsut [1982] showed that the competition number of
a graph is related to the edge clique cover number of the
graph via . We first show
that for any positive integer satisfying , there
exists a graph with and characterize a graph
satisfying . We then focus on what we call
\emph{competitively tight graphs} which satisfy the lower bound, i.e.,
. We completely characterize the competitively tight
graphs having at most two triangles. In addition, we provide a new upper bound
for the competition number of a graph from which we derive a sufficient
condition and a necessary condition for a graph to be competitively tight.Comment: 10 pages, 2 figure
- …