18 research outputs found
Sodium nitrite caused defective development of zebrafish heart in a dose dependent way.
<p>(A–C) Zebrafish embryos exposed to 100 mg/l sodium nitrite from 10 hpf exhibited cardiac edema from slight phenotype (B) to severe phenotype (C) compared to control embryos with normal heart (A) at 108 hpf. (D) A scatter plot showing the edema index (EI) of embryos exposed with different concentration of sodium nitrite. EI is defined as b/a. Average ± standard errors of EIs were shown in lines. (E–G) Histological sections showing 100 mg/l sodium nitrite exposure caused defective structure of zebrafish heart at 108 hpf. Compared to control embryos with normal pericardial membrane, myocardium and both superior and inferior valve leaflets (E), 4/7 embryos exposed to the nitrite showed thinner pericardial membrane and myocardium, and only superior valve leaflet but no formation of inferior valve leaflet (F), whereas 3/7 of the treated embryos displayed thinner pericardial membrane and myocardium and no formation of either superior or inferior leaflets (G). a: the semi-diameter of ventricle; b: the semi-diameter of the pericardial cavity. Red star (*): pericardial membrane; Black star (*): myocardium; Black arrow: position of superior valve leaflet; Black arrowhead: position of inferior valve leaflet; A: atria; V: ventricle.</p
Histological and molecular analyses revealing excessive nitrite affected zebrafish heart valve development directly.
<p>Nitrite-exposed embryos were treated with 100 mg/l sodium nitrite from 10 hpf. (A–F) Histological sections showing defective valve development caused by nitrite exposure occurred from 48 hpf. At 36 hpf, the embryos exposed to nitrite exhibited similar histological heart structure (B) to that of control zebrafish, comprising one layer of myocardium and one layer of endocardium (A). At 48 hpf, endocardial cells of control embryos exhibited cuboidal shape in AVC between two chambers (C) but the exposed embryos did not have cuboidal endocardial cells in AVC (D). At 76 hpf, invagination of endocardial cells into cardiac jelly in AVC in control embryos formed superior primitive valve leaflet consisting of multilayer of cells (E); however, no superior primitive valve leaflet (no multilayer cells in the superior part of AVC) was formed in nitrite-exposed embryos (F). (G–N) Cardiac looping in zebrafish embryos shown by the expression of <i>cmlc2</i> revealing abnormal cardiac looping caused by nitrite exposure occurred as early as 43 hpf. The expression pattern of <i>cmlc2</i> was not affected by nitrite exposure at 36 hpf (G–H) and 40 hpf (I–J), but slightly abnormal (shown in white dotted curve) at 43 hpf (K–L) and obviously abnormal (shown in white dotted curve) at 48 hpf (M–N). (O–X) Nitrite exposures altered the expressions of molecular makers of valve progenitors at 48 hpf. <i>nppa</i> was not expressed in the AVC (rectangular box) of control embryos (O) but was ectopically expressed in the AVC of nitrite-exposed embryos (P). Compared to control embryos, nitrite exposure significantly decreased or abolished expressions of <i>bmp4</i> (Q, R), <i>vcana</i> (S, T), <i>notch1b</i> (U, V) and <i>has2</i> (W, X) in AVC. The number shown in the lower right-hand corner was the number of embryos exhibiting the typical phenotype shown in the panel to the number of embryos totally observed. Black arrow: position of cuboidal endocardial cells; Black arrowhead: position of superior primitive leaflet; White arrow: endocardium; White arrowhead: myocardium.</p
Inhibiting NO signaling in nitrite-exposed embryos partially rescued defective development of cardiac valve in zebrafish embryos.
<p>(A) The cGMP level was dramatically increased in the nitrite-exposed embryos at 24, 36, 48 and 76 hpf, respectively. **: P<0.01. The values of cGMP amount in all the control embryos were normalized to 1.0, respectively. The value of cGMP amount in the nitrite-exposed embryos was the fold of the control embryos at the same developmental stage. (B) A scatter plot showing the increased EIs in the nitrite-exposed embryos were significantly reduced by microinjecting ODQ (sGC inhibitor) into nitrite-exposed embryos. Different treatments of embryos were shown in X-axis. EI (shown in Y-axis) of each embryos was shown in the plot. Average ± standard errors of EIs were shown in lines. (C–E) Defective histological structures of heart caused by excessive nitrite were partially rescued by microinjection of ODQ into nitrite-exposed embryos. Embryos were observed at 108 hpf. Compared to control embryos with normal pericardial membrane, myocardium and both superior and inferior valve leaflets (C), 6/8 embryos exposed to the nitrite showed thinner myocardium and defective formation of either superior or inferior leaflets (D). ODQ microinjection resulted in 3/6 of the embryos developed both superior and inferior leaflets (E). (F–T) Microinjection of ODQ partially rescued the diminished expressions of valve progenitor makers in zebrafish embryos at 48 hpf. <i>nppa</i> is not expressed in the AVC (rectangular box) of control embryos (F) but was ectopically expressed in the AVC of nitrite-exposed embryos (K). Microinjection of ODQ into nitrite-exposed embryos prevented 7 of 15 embryos from expressing <i>nppa</i> in AVC (P). Compared to control embryos, nitrite exposure significantly decreased or abolished expressions of <i>bmp4</i> (G, L), <i>vcana</i> (H, M), <i>notch1b</i> (I, N) and <i>has2</i> (J, O) in AVC. However, microinjection of ODQ into nitrite-exposed embryos resumed expressions of <i>bmp4</i> (Q), <i>vcana</i> (R), <i>notch1b</i> (S) and <i>has2</i> (T) in about half embryos. Red star (*): pericardial membrane; Black arrow: position of superior valve leaflet; Black arrowhead: position of inferior valve leaflet; A: atria; V: ventricle.</p
A scatter plot showing that sodium nitrite affected zebrafish heart development starting from 36 hpf.
<p>Nitrite-exposed embryos were treated with 100 mg/l sodium nitrite for different time window shown in X-axis. EI (shown in Y-axis) of each embryos was measured and shown in the plot. Average ± standard errors of EIs were shown in lines.</p
Resonance Rayleigh scattering and resonance nonlinear scattering of the palladium(II)–acetazolamide chelate with eosin Y and their analytical application
<p>A simple, rapid, and convenient method based on ion association for the determination of acetazolamide has been developed. Acetazolamide can react with palladium(II) to form cationic chelate at sodium acetate–acetic acid buffer solution, which can further react with eosin Y to form an ion association complex. As a result, the resonance Rayleigh scattering, second-order scattering, and frequency doubling scattering intensities are enhanced. Analytical wavelengths of resonance Rayleigh scattering, second-order scattering, and frequency doubling scattering located at 298, 558, and 338 nm, and the linearity range are 0.014–2.5, 0.034–2.5, and 0.119–2.4 µg mL<sup>−1</sup> respectively. In addition, the optimum conditions and the effect of coexisting substances are investigated. Besides, the structure of ion association complex, the reaction mechanism and the reasons for the enhancement of scattering are discussed through infrared spectra, absorption spectra, and quantum chemical calculations.</p
Azaisoquinolinones: N Positions Tell You Different Stories in Their Optical Properties
Since
isoquinolinones and their derivatives have been demonstrated
to be powerful building blocks in constructing larger acenes and twistacenes,
azaisoquinolinones and their analogues could also be important intermediates
to approach larger N-heteroacenes. In this paper, we are interested
in developing a concise method to synthesize novel azaisoquinolinones
building blocks and studying their physical properties. Our results
showed that the different N positions have a large effect on the optical
and electrochemical properties of azaisoquinolinones. For example,
protonation of 6- and 7-azaisoquinolinones shows different shifts
of UV–vis and FL spectra. More interestingly, 6- and 7-azaisoquinolinones
exhibited different interactions with metal ions in CH<sub>3</sub>CN solution. Upon the addition of 2 equiv of Fe<sup>3+</sup>, 6-azaisoquinolinone
displayed an absorption wavelength red-shifted from 470 to 540 nm
(Δλ = 70 nm) with a color change from yellow to red, while
the interaction between Fe<sup>3+</sup> and 7-azaisoquinolinone was
very weak and there was no obvious color change (Δλ =
18 nm). Moreover, theoretical calculations confirmed the different
optical properties with 6- and 7-azaisoquinolinones
Azaisoquinolinones: N Positions Tell You Different Stories in Their Optical Properties
Since
isoquinolinones and their derivatives have been demonstrated
to be powerful building blocks in constructing larger acenes and twistacenes,
azaisoquinolinones and their analogues could also be important intermediates
to approach larger N-heteroacenes. In this paper, we are interested
in developing a concise method to synthesize novel azaisoquinolinones
building blocks and studying their physical properties. Our results
showed that the different N positions have a large effect on the optical
and electrochemical properties of azaisoquinolinones. For example,
protonation of 6- and 7-azaisoquinolinones shows different shifts
of UV–vis and FL spectra. More interestingly, 6- and 7-azaisoquinolinones
exhibited different interactions with metal ions in CH<sub>3</sub>CN solution. Upon the addition of 2 equiv of Fe<sup>3+</sup>, 6-azaisoquinolinone
displayed an absorption wavelength red-shifted from 470 to 540 nm
(Δλ = 70 nm) with a color change from yellow to red, while
the interaction between Fe<sup>3+</sup> and 7-azaisoquinolinone was
very weak and there was no obvious color change (Δλ =
18 nm). Moreover, theoretical calculations confirmed the different
optical properties with 6- and 7-azaisoquinolinones
Graphdiyne-Supported NiFe Layered Double Hydroxide Nanosheets as Functional Electrocatalysts for Oxygen Evolution
Graphdiyne (GDY), a novel two-dimensional
full-carbon material, has attracted lots of attention because of its
high conjugated system comprising sp<sup>2</sup> and sp-hybridized
carbons. The distinctive structure characteristics endow it unique
electronic structure, uniform distributed pores and excellent chemical
stability. A novel GDY-supported NiFe layered double hydroxide (LDH)
composite was successfully prepared for the first time. By taking
advantage of the increased surface active areas and improved conductivity,
the designed hierarchical GDY@NiFe composite exhibits outstanding
catalytic activity that only required a small overpotential about
260 mV to achieve the current density of 10 mA cm<sup>–2</sup>. The nanocomposite shows excellent durability in alkaline medium
implying a superior OER electrocatalytic activity. It is anticipated
that the as-prepared GDY@NiFe composite electrocatalyst provide new
insights in designing graphdiyne-supported electrocatalyst materials
for oxygen evolution application
Synthesis, Characterization, Physical Properties, and OLED Application of Single BN-Fused Perylene Diimide
It
is very challenging to introduce azaborine into an electron-deficient
arene system because of unfavorable intramolecular electrophilic borylation
reaction. In this report, we adopted a straightforward methodology
to construct a large BN-embedded π-system based on perylene
diimide (PDI), which is the first BN-annulation example with highly
electron-withdrawing polycyclic aromatic hydrocarbons. The physical
properties of the as-prepared <i>N</i>,<i>N</i>-dicyclohexyl-1-aza-12-bora-benzoperylene diimide (<b>PDI-1BN</b>) have been fully studied, and its sensing behavior to fluoride ion
as well as its OLED performance was also investigated
Additional file 1: Figure S1. of miR-296 inhibits the metastasis and epithelial-mesenchymal transition of colorectal cancer by targeting S100A4
miR-296 overexpression doesn’t notably reduced cell migration and invasion in S100A4 knockdown HT29 cells. S100A4 knockdown HT29 cells that were transfected with negative control mimics (miR-control) and miR-296 mimics, respectively, were subjected to Transwell assays for cell migration and invasion. Quantitative data indicated that miR-296 overexpression slightly reduced cell migration and invasion in S100A4 knockdown HT29 cells. n = 3 repeats with similar results. (TIF 674 kb