4 research outputs found
Dose-response relation plots between carotenoids consumption and risk of PCa.
<p>(A) Dietary lycopene intake(mg/day) and risk of PCa; (B) Blood lycopene levels (ug/dl) and risk of PCa; (C) Dietary α-carotene intake(mg/day) and risk of PCa. These relationships were estimated by using random-effects metaregression. Dotted lines represent the 95% CIs for the fitted trend.</p
Pooled risks according to dietary carotenoids intake and its blood levels.
<p>Dietary intake of α-carotene, β-carotene, lycopene and PCa risk(left), blood levels of α-carotene, β-carotene, lycopene and PCa risk(right).</p
Characteristics of included studies.
<p>Abbreviations: NCCS, nested case-control study; CCS, case-control study; SD, standard deviation; T, tertile; Q, quartile/quintile; BMI, body mass index; NSAIDs, non-steroidal anti-inflammatory drugs; FHPC, family history of prostate cancer; NR, not reported; NA, not accessible.</p><p><sup>a</sup>Derived from the slogan of a campaign, “Give us a CLUE to cancer.”</p><p><sup>b</sup>Indicated interquartile range(IQR).</p><p>Characteristics of included studies.</p
Effect of Carotene and Lycopene on the Risk of Prostate Cancer: A Systematic Review and Dose-Response Meta-Analysis of Observational Studies
<div><p>Background</p><p>Many epidemiologic studies have investigated the association between carotenoids intake and risk of Prostate cancer (PCa). However, results have been inconclusive.</p><p>Methods</p><p>We conducted a systematic review and dose-response meta-analysis of dietary intake or blood concentrations of carotenoids in relation to PCa risk. We summarized the data from 34 eligible studies (10 cohort, 11 nested case-control and 13 case-control studies) and estimated summary Risk Ratios (RRs) and 95% confidence intervals (CIs) using random-effects models.</p><p>Results</p><p>Neither dietary β-carotene intake nor its blood levels was associated with reduced PCa risk. Dietary α-carotene intake and lycopene consumption (both dietary intake and its blood levels) were all associated with reduced risk of PCa (RR for dietary α-carotene intake: 0.87, 95%CI: 0.76–0.99; RR for dietary lycopene intake: 0.86, 95%CI: 0.75–0.98; RR for blood lycopene levels: 0.81, 95%CI: 0.69–0.96). However, neither blood α-carotene levels nor blood lycopene levels could reduce the risk of advanced PCa. Dose-response analysis indicated that risk of PCa was reduced by 2% per 0.2mg/day (95%CI: 0.96–0.99) increment of dietary α-carotene intake or 3% per 1mg/day (95%CI: 0.94–0.99) increment of dietary lycopene intake.</p><p>Conclusions</p><p>α-carotene and lycopene, but not β-carotene, were inversely associated with the risk of PCa. However, both α-carotene and lycopene could not lower the risk of advanced PCa.</p></div