31 research outputs found

    Differential Membrane Binding Mechanics of Synaptotagmin Isoforms Observed in Atomic Detail

    No full text
    Synaptotagmin (Syt) is a membrane-associated protein involved in vesicle fusion through the SNARE complex that is found throughout the human body in 17 different isoforms. These isoforms have two membrane-binding C2 domains, which sense Ca2+ and thereby promote anionic membrane binding and lead to vesicle fusion. Through molecular dynamics simulations using the highly mobile membrane mimetic acclerated bilayer model, we have investigated how small protein sequence changes in the Ca2+-binding loops of the C2 domains may give rise to the experimentally determined difference in binding kinetics between Syt-1 and Syt-7 isoforms. Syt-7 C2 domains are found to form more close contacts with anionic phospholipid headgroups, particularly in loop 1, where an additional positive charge in Syt-7 draws the loop closer to the membrane and causes the anchoring residue F167 to insert deeper into the bilayer than the corresponding methionine in Syt-1 (M173). By performing additional replica exchange umbrella sampling calculations, we demonstrate that these additional contacts increase the energetic cost of unbinding the Syt-7 C2 domains from the bilayer, causing them to unbind more slowly than their counterparts in Syt-1

    Differential Membrane Binding Mechanics of Synaptotagmin Isoforms Observed in Atomic Detail

    No full text
    Synaptotagmin (Syt) is a membrane-associated protein involved in vesicle fusion through the SNARE complex that is found throughout the human body in 17 different isoforms. These isoforms have two membrane-binding C2 domains, which sense Ca<sup>2+</sup> and thereby promote anionic membrane binding and lead to vesicle fusion. Through molecular dynamics simulations using the highly mobile membrane mimetic acclerated bilayer model, we have investigated how small protein sequence changes in the Ca<sup>2+</sup>-binding loops of the C2 domains may give rise to the experimentally determined difference in binding kinetics between Syt-1 and Syt-7 isoforms. Syt-7 C2 domains are found to form more close contacts with anionic phospholipid headgroups, particularly in loop 1, where an additional positive charge in Syt-7 draws the loop closer to the membrane and causes the anchoring residue F167 to insert deeper into the bilayer than the corresponding methionine in Syt-1 (M173). By performing additional replica exchange umbrella sampling calculations, we demonstrate that these additional contacts increase the energetic cost of unbinding the Syt-7 C2 domains from the bilayer, causing them to unbind more slowly than their counterparts in Syt-1

    Reversible Unwrapping Algorithm for Constant-Pressure Molecular Dynamics Simulations

    No full text
    Molecular simulation technologies have afforded researchers a unique look into the nanoscale interactions driving physical processes. However, a limitation for molecular dynamics (MD) simulations is that they must be performed on finite-sized systems in order to map onto computational resources. To minimize artifacts arising from finite-sized simulation systems, it is common practice for MD simulations to be performed with periodic boundary conditions (PBCs). However, in order to calculate specific physical properties, such as mean square displacements to calculate diffusion coefficients, continuous particle trajectories where the atomic movements are continuous and do not jump between cell faces are required. In these cases, modifying atomic coordinates through unwrapping schemes is an essential post-processing tool to remove these jumps. Here, two established trajectory unwrapping schemes are applied to 1 μs wrapped trajectories for a small water box and lysozyme in water. The existing schemes can result in spurious diffusion coefficients, long bonds within unwrapped molecules, and inconsistent atomic coordinates when coordinates are rewrapped after unwrapping. We determine that prior unwrapping schemes do not account for changing periodic box dimensions and introduce an additional correction term to the existing displacement unwrapping scheme to correct for these artifacts. We also demonstrate that the resulting algorithm is a hybrid between the existing heuristic and displacement unwrapping schemes. After treatment using this new unwrapping scheme, molecular geometries are correct even after long simulations. In anticipation for longer MD trajectories, we develop implementations for this new scheme in multiple PBC handling tools

    Differential Membrane Binding Mechanics of Synaptotagmin Isoforms Observed in Atomic Detail

    No full text
    Synaptotagmin (Syt) is a membrane-associated protein involved in vesicle fusion through the SNARE complex that is found throughout the human body in 17 different isoforms. These isoforms have two membrane-binding C2 domains, which sense Ca2+ and thereby promote anionic membrane binding and lead to vesicle fusion. Through molecular dynamics simulations using the highly mobile membrane mimetic acclerated bilayer model, we have investigated how small protein sequence changes in the Ca2+-binding loops of the C2 domains may give rise to the experimentally determined difference in binding kinetics between Syt-1 and Syt-7 isoforms. Syt-7 C2 domains are found to form more close contacts with anionic phospholipid headgroups, particularly in loop 1, where an additional positive charge in Syt-7 draws the loop closer to the membrane and causes the anchoring residue F167 to insert deeper into the bilayer than the corresponding methionine in Syt-1 (M173). By performing additional replica exchange umbrella sampling calculations, we demonstrate that these additional contacts increase the energetic cost of unbinding the Syt-7 C2 domains from the bilayer, causing them to unbind more slowly than their counterparts in Syt-1

    Memory, gender and anti-fascism in France and Britain in the 1930s

    No full text
    Synaptotagmin (Syt) is a membrane-associated protein involved in vesicle fusion through the SNARE complex that is found throughout the human body in 17 different isoforms. These isoforms have two membrane-binding C2 domains, which sense Ca<sup>2+</sup> and thereby promote anionic membrane binding and lead to vesicle fusion. Through molecular dynamics simulations using the highly mobile membrane mimetic acclerated bilayer model, we have investigated how small protein sequence changes in the Ca<sup>2+</sup>-binding loops of the C2 domains may give rise to the experimentally determined difference in binding kinetics between Syt-1 and Syt-7 isoforms. Syt-7 C2 domains are found to form more close contacts with anionic phospholipid headgroups, particularly in loop 1, where an additional positive charge in Syt-7 draws the loop closer to the membrane and causes the anchoring residue F167 to insert deeper into the bilayer than the corresponding methionine in Syt-1 (M173). By performing additional replica exchange umbrella sampling calculations, we demonstrate that these additional contacts increase the energetic cost of unbinding the Syt-7 C2 domains from the bilayer, causing them to unbind more slowly than their counterparts in Syt-1

    A Microscopic View of Phospholipid Insertion into Biological Membranes

    No full text
    Understanding the process of membrane insertion is an essential step in developing a detailed mechanism, for example, for peripheral membrane protein association and membrane fusion. The highly mobile membrane mimetic (HMMM) has been used to accelerate the membrane association and binding of peripheral membrane proteins in simulations by increasing the lateral diffusion of phospholipid headgroups while retaining an atomistic description of the interface. Through a comparative study, we assess the difference in insertion rate of a free phospholipid into an HMMM as well as into a conventional phospholipid bilayer and develop a detailed mechanistic model of free phospholipid insertion into biological membranes. The mechanistic insertion model shows that successful irreversible association of the free phospholipid to the membrane interface, which results in its insertion, is the rate-limiting step. Association is followed by independent, sequential insertion of the acyl tails of the free phospholipid into the membrane, with splayed acyl tail intermediates. Use of the HMMM is found to replicate the same intermediate insertion states as in the full phospholipid bilayer; however, it accelerates overall insertion by approximately a factor of 3, with the probability of successful association of phospholipid to the membrane being significantly enhanced

    Differential Membrane Binding Mechanics of Synaptotagmin Isoforms Observed in Atomic Detail

    No full text
    Synaptotagmin (Syt) is a membrane-associated protein involved in vesicle fusion through the SNARE complex that is found throughout the human body in 17 different isoforms. These isoforms have two membrane-binding C2 domains, which sense Ca<sup>2+</sup> and thereby promote anionic membrane binding and lead to vesicle fusion. Through molecular dynamics simulations using the highly mobile membrane mimetic acclerated bilayer model, we have investigated how small protein sequence changes in the Ca<sup>2+</sup>-binding loops of the C2 domains may give rise to the experimentally determined difference in binding kinetics between Syt-1 and Syt-7 isoforms. Syt-7 C2 domains are found to form more close contacts with anionic phospholipid headgroups, particularly in loop 1, where an additional positive charge in Syt-7 draws the loop closer to the membrane and causes the anchoring residue F167 to insert deeper into the bilayer than the corresponding methionine in Syt-1 (M173). By performing additional replica exchange umbrella sampling calculations, we demonstrate that these additional contacts increase the energetic cost of unbinding the Syt-7 C2 domains from the bilayer, causing them to unbind more slowly than their counterparts in Syt-1

    Extension of the Highly Mobile Membrane Mimetic to Transmembrane Systems through Customized <i>in Silico</i> Solvents

    No full text
    The mechanics of the protein–lipid interactions of transmembrane proteins are difficult to capture with conventional atomic molecular dynamics, due to the slow lateral diffusion of lipids restricting sampling to states near the initial membrane configuration. The highly mobile membrane mimetic (HMMM) model accelerates lipid dynamics by modeling the acyl tails nearest to the membrane center as a fluid organic solvent while maintaining an atomic description of the lipid headgroups and short acyl tails. The HMMM has been applied to many peripheral protein systems; however, the organic solvent used to date caused deformations in transmembrane proteins by intercalating into the protein and disrupting interactions between individual side chains. We ameliorate the effect of the solvent on transmembrane protein structure through the development of two new <i>in silico</i> Lennard-Jones solvents. The parameters for the new solvents were determined through an extensive parameter search in order to match the bulk properties of alkanes in a highly simplified model. Using these new solvents, we substantially improve the insertion free energy profiles of 10 protein side chain analogues across the entire bilayer. In addition, we reduce the intercalation of solvent into transmembrane systems, resulting in native-like transmembrane protein structures from five different topological classes within a HMMM bilayer. The parametrization of the solvents, in addition to their computed physical properties, is discussed. By combining high lipid lateral diffusion with intact transmembrane proteins, we foresee the developed solvents being useful to efficiently identify membrane composition inhomogeneities and lipid binding caused by the presence of membrane proteins

    Plant Terpenoid Permeability through Biological Membranes Explored via Molecular Simulations

    No full text
    Plants synthesize small molecule diterpenes composed of 20 carbons from precursor isopentenyl diphosphate and dimethylallyl disphosphate, manufacturing diverse compounds used for defense, signaling, and other functions. Industrially, diterpenes are used as natural aromas and flavoring, as pharmaceuticals, and as natural insecticides or repellents. Despite diterpene ubiquity in plant systems, it remains unknown how plants control diterpene localization and transport. For many other small molecules, plant cells maintain transport proteins that control compound compartmentalization. However, for most diterpene compounds, specific transport proteins have not been identified, and so it has been hypothesized that diterpenes may cross biological membranes passively. Through molecular simulation, we study membrane transport for three complex diterpenes from among the many made by members of the Lamiaceae family to determine their permeability coefficient across plasma membrane models. To facilitate accurate simulation, the intermolecular interactions for leubethanol, abietic acid, and sclareol were parametrized through the standard CHARMM methodology for incorporation into molecular simulations. To evaluate the effect of membrane composition on permeability, we simulate the three diterpenes in two membrane models derived from sorghum and yeast lipidomics data. We track permeation events within our unbiased simulations, and compare implied permeation coefficients with those calculated from Replica Exchange Umbrella Sampling calculations using the inhomogeneous solubility diffusion model. The diterpenes are observed to permeate freely through these membranes, indicating that a transport protein may not be needed to export these small molecules from plant cells. Moreover, the permeability is observed to be greater for plant-like membrane compositions when compared against animal-like membrane models. Increased permeability for diterpene molecules in plant membranes suggest that plants have tailored their membranes to facilitate low-energy transport processes for signaling molecules

    Assembly and Analysis of Cell-Scale Membrane Envelopes

    No full text
    The march toward exascale computing will enable routine molecular simulation of larger and more complex systems, for example, simulation of entire viral particles, on the scale of approximately billions of atomsa simulation size commensurate with a small bacterial cell. Anticipating the future hardware capabilities that will enable this type of research and paralleling advances in experimental structural biology, efforts are currently underway to develop software tools, procedures, and workflows for constructing cell-scale structures. Herein, we describe our efforts in developing and implementing an efficient and robust workflow for construction of cell-scale membrane envelopes and embedding membrane proteins into them. A new approach for construction of massive membrane structures that are stable during the simulations is built on implementing a subtractive assembly technique coupled with the development of a structure concatenation tool (fastmerge), which eliminates overlapping elements based on volumetric criteria rather than adding successive molecules to the simulation system. Using this approach, we have constructed two “protocells” consisting of MARTINI coarse-grained beads to represent cellular membranes, one the size of a cellular organelle and another the size of a small bacterial cell. The membrane envelopes constructed here remain whole during the molecular dynamics simulations performed and exhibit water flux only through specific proteins, demonstrating the success of our methodology in creating tight cell-like membrane compartments. Extended simulations of these cell-scale structures highlight the propensity for nonspecific interactions between adjacent membrane proteins leading to the formation of protein microclusters on the cell surface, an insight uniquely enabled by the scale of the simulations. We anticipate that the experiences and best practices presented here will form the basis for the next generation of cell-scale models, which will begin to address the addition of soluble proteins, nucleic acids, and small molecules essential to the function of a cell
    corecore