1,268 research outputs found

    The generic task toolset: High level languages for the construction of planning and problem solving systems

    Get PDF
    The current generation of languages for the construction of knowledge-based systems as being at too low a level of abstraction is criticized, and the need for higher level languages for building problem solving systems is advanced. A notion of generic information processing tasks in knowledge-based problem solving is introduced. A toolset which can be used to build expert systems in a way that enhances intelligibility and productivity in knowledge acquistion and system construction is described. The power of these ideas is illustrated by paying special attention to a high level language called DSPL. A description is given of how it was used in the construction of a system called MPA, which assists with planning in the domain of offensive counter air missions

    Coupled superconductors and beyond

    Get PDF
    This paper describes the events leading to the discovery of coupled superconductors, the author's move in the 1970s to a perspective where mind plays a role comparable to matter, and the remarkable hostility sometimes encountered by those who venture into unconventional areas.Comment: Invited paper for special issue of Low Temperature Physics/Fizika Nizkikh Temperatur devoted to "Quantum Coherent Effects in Superconductors and New Materials". 6pp. v5: open-access published versio

    Localization of Gauge Fields and Monopole Tunnelling

    Get PDF
    We study the dynamical localization of a massless gauge field on a lower-dimensional surface (2-brane). In flat space, the necessary and sufficient condition for this phenomenon is the existence of confinement in the bulk. The resulting configuration is equivalent to a dual Josephson junction. This duality leads to an interesting puzzle, as it implies that a localized massless theory, even in the Abelian case, must become confining at exponentially large distances. Through the use of topological arguments we clarify the physics behind this large-distance confinement and identify the instantons of the brane world-volume theory that are responsible for its appearance. We show that they correspond to the (condensed) bulk magnetic charges (monopoles), that occasionally tunnel through the brane and induce weak confinement of the brane theory. We consider the possible generalization of this effect to higher dimensions and discuss phenomenological bounds on the confinement of electric charges at exponentially large distances within our Universe.Comment: 11 pages, 3 figures, improvements in the presentation, version to appear in Physical Review

    Oscillatory decay of a two-component Bose-Einstein condensate

    Full text link
    We study the decay of a two-component Bose-Einstein condensate with negative effective interaction energy. With a decreasing atom number due to losses, the atom-atom interaction becomes less important and the system undergoes a transition from a bistable Josephson regime to the monostable Rabi regime, displaying oscillations in phase and number. We study the equations of motion and derive an analytical expression for the oscillation amplitude. A quantum trajectory simulation reveals that the classical description fails for low emission rates, as expected from analytical considerations. Observation of the proposed effect will provide evidence for negative effective interaction.Comment: 4 pages, 3 figue

    Universal point contact resistance between thin-film superconductors

    Get PDF
    A system comprising two superconducting thin films connected by a point contact is considered. The contact resistance is calculated as a function of temperature and film geometry, and is found to vanish rapidly with temperature, according to a universal, nearly activated form, becoming strictly zero only at zero temperature. At the lowest temperatures, the activation barrier is set primarily by the superfluid stiffness in the films, and displays only a weak (i.e., logarithmic) temperature dependence. The Josephson effect is thus destroyed, albeit only weakly, as a consequence of the power-law-correlated superconducting fluctuations present in the films below the Berezinskii-Kosterlitz-Thouless transition temperature. The behavior of the resistance is discussed, both in various limiting regimes and as it crosses over between these regimes. Details are presented of a minimal model of the films and the contact, and of the calculation of the resistance. A formulation in terms of quantum phase-slip events is employed, which is natural and effective in the limit of a good contact. However, it is also shown to be effective even when the contact is poor and is, indeed, indispensable, as the system always behaves as if it were in the good-contact limit at low enough temperature. A simple mechanical analogy is introduced to provide some heuristic understanding of the nearly-activated temperature dependence of the resistance. Prospects for experimental tests of the predicted behavior are discussed, and numerical estimates relevant to anticipated experimental settings are provided.Comment: 29 pages (single column format), 7 figure

    Phase Modulated Thermal Conductance of Josephson Weak Links

    Full text link
    We present a theory for quasiparticle heat transport through superconducting weak links. The thermal conductance depends on the phase difference (ϕ\phi) of the superconducting leads. Branch conversion processes, low-energy Andreev bound states near the contact and the suppression of the local density of states near the gap edge are related to phase-sensitive transport processes. Theoretical results for the influence of junction transparency, temperature and disorder, on the phase modulation of the conductance are reported. For high-transmission weak links, D1D\to 1, the formation of an Andreev bound state at ϵb=Δcos(ϕ/2)\epsilon_{\text{\tiny b}}=\Delta\cos(\phi/2) leads to suppression of the density of states for the continuum excitations that transport heat, and thus, to a reduction in the conductance for ϕπ\phi\simeq\pi. For low-transmission (D1D\ll 1) barriers resonant scattering at energies ϵ(1+D/2)Δ\epsilon\simeq(1+D/2)\Delta leads to an increase in the thermal conductance as TT drops below TcT_c (for phase differences near ϕ=π\phi=\pi).Comment: 4 pages, 3 figures Expanded discussion of boundary conditions for Ricatti amplitude

    Macroscopic Symmetry Group Describes Josephson Tunneling in Twinned Crystals

    Full text link
    A macroscopic symmetry group describing the superconducting state of an orthorhombically twinned crystal of YBCO is introduced. This macroscopic symmetry group is different for different symmetries of twin boundaries. Josephson tunneling experiments performed on twinned crystals of YBCO determine this macroscopic symmetry group and hence determine the twin boundary symmetry (but do not experimentally determine whether the microscopic order parameter is primarily d- or s-wave). A consequence of the odd-symmetry twin boundaries in YBCO is the stability of vortices containing one half an elementary flux quantum at the intersection of a twin boundary and certain grain boundaries.Comment: 6 pages, to be published in the Proceedings of the MOS96 Conference in the Journal of Low Temperature Physic

    Probing Pseudogap by Josephson Tunneling

    Full text link
    We propose here an experiment aimed to determine whether there are superconducting pairing fluctuations in the pseudogap regime of the high-TcT_c materials. In the experimental setup, two samples above TcT_c are brought into contact at a single point and the differential AC conductivity in the presence of a constant applied bias voltage between the samples, VV, should be measured. We argue the the pairing fluctuations will produce randomly fluctuating Josephson current with zero mean, however the current-current correlator will have a characteristic frequency given by Josephson frequency ωJ=2eV/\omega_J = 2 e V /\hbar. We predict that the differential AC conductivity should have a peak at the Josephson frequency with the width determined by the phase fluctuations time.Comment: 4 pages, 2 eps figure

    Pion Propagation near the QCD Chiral Phase Transition

    Get PDF
    We point out that, in analogy with spin waves in antiferromagnets, all parameters describing the real-time propagation of soft pions at temperatures below the QCD chiral phase transition can be expressed in terms of static correlators. This allows, in principle, the determination of the soft pion dispersion relation on the lattice. Using scaling and universality arguments, we determine the critical behavior of the parameters of pion propagation. We predict that when the critical temperature is approached from below, the pole mass of the pion drops despite the growth of the pion screening mass. This fact is attributed to the decrease of the pion velocity near the phase transition.Comment: 8 pages (single column), RevTeX; added references, version to be published in PR
    corecore