10 research outputs found
Data_Sheet_5_Comparative Genomics of Novel Agrobacterium G3 Strains Isolated From the International Space Station and Description of Agrobacterium tomkonis sp. nov..xlsx
Strains of Agrobacterium genomospecies 3 (i.e., genomovar G3 of the Agrobacterium tumefaciens species complex) have been previously isolated from diverse environments, including in association with plant roots, with algae, as part of a lignocellulose degrading community, from a hospital environment, as a human opportunistic pathogen, or as reported in this study, from a surface within the International Space Station. Polyphasic taxonomic methods revealed the relationship of Agrobacterium G3 strains to other Agrobacterium spp., which supports the description of a novel species. The G3 strains tested (n = 9) were phenotypically distinguishable among the strains from other genomospecies of the genus Agrobacterium. Phylogenetic analyses of the 16S rRNA gene, gyrB gene, multi-locus sequence analysis, and 1,089-gene core-genome gene concatenate concur that tested G3 strains belong to the Agrobacterium genus and they form a clade distinct from other validly described Agrobacterium species. The distinctiveness of this clade was confirmed by average nucleotide identity (ANI) and in silico digital DNA–DNA hybridization (dDDH) comparisons between the G3 tested strains and all known Agrobacterium species type strains, since obtained values were considerably below the 95% (ANI) and 70% (dDDH) thresholds used for the species delineation. According to the core-genome phylogeny and ANI comparisons, the closest relatives of G3 strains were Agrobacterium sp. strains UGM030330-04 and K599, members of a novel genomospecies we propose to call genomovar G21. Using this polyphasic approach, we characterized the phenotypic and genotypic synapomorphies of Agrobacterium G3, showing it is a bona fide bacterial species, well separated from previously named Agrobacterium species or other recognized genomic species. We thus propose the name Agrobacterium tomkonis for this species previously referred to as Agrobacterium genomospecies 3. The type strain of A. tomkonis is IIF1SW-B1T (= LMG 32164 = NRRL B-65602). Comparative genomic analysis show A. tomkonis strains have species-specific genes associated with secretion of secondary metabolites, including an exopolysaccharide and putative adhesins and resistance to copper. A. tomkonis specific gene functions notably relate to surface adhesion and could be involved to colonize nutrient-poor and harsh habitats. The A. tomkonis strains from the ISS showed presence of a 40-kbp plasmid and several other potential mobile genetic elements detected that could also be part of conjugative elements or integrated prophages.</p
Data_Sheet_7_Comparative Genomics of Novel Agrobacterium G3 Strains Isolated From the International Space Station and Description of Agrobacterium tomkonis sp. nov..docx
Strains of Agrobacterium genomospecies 3 (i.e., genomovar G3 of the Agrobacterium tumefaciens species complex) have been previously isolated from diverse environments, including in association with plant roots, with algae, as part of a lignocellulose degrading community, from a hospital environment, as a human opportunistic pathogen, or as reported in this study, from a surface within the International Space Station. Polyphasic taxonomic methods revealed the relationship of Agrobacterium G3 strains to other Agrobacterium spp., which supports the description of a novel species. The G3 strains tested (n = 9) were phenotypically distinguishable among the strains from other genomospecies of the genus Agrobacterium. Phylogenetic analyses of the 16S rRNA gene, gyrB gene, multi-locus sequence analysis, and 1,089-gene core-genome gene concatenate concur that tested G3 strains belong to the Agrobacterium genus and they form a clade distinct from other validly described Agrobacterium species. The distinctiveness of this clade was confirmed by average nucleotide identity (ANI) and in silico digital DNA–DNA hybridization (dDDH) comparisons between the G3 tested strains and all known Agrobacterium species type strains, since obtained values were considerably below the 95% (ANI) and 70% (dDDH) thresholds used for the species delineation. According to the core-genome phylogeny and ANI comparisons, the closest relatives of G3 strains were Agrobacterium sp. strains UGM030330-04 and K599, members of a novel genomospecies we propose to call genomovar G21. Using this polyphasic approach, we characterized the phenotypic and genotypic synapomorphies of Agrobacterium G3, showing it is a bona fide bacterial species, well separated from previously named Agrobacterium species or other recognized genomic species. We thus propose the name Agrobacterium tomkonis for this species previously referred to as Agrobacterium genomospecies 3. The type strain of A. tomkonis is IIF1SW-B1T (= LMG 32164 = NRRL B-65602). Comparative genomic analysis show A. tomkonis strains have species-specific genes associated with secretion of secondary metabolites, including an exopolysaccharide and putative adhesins and resistance to copper. A. tomkonis specific gene functions notably relate to surface adhesion and could be involved to colonize nutrient-poor and harsh habitats. The A. tomkonis strains from the ISS showed presence of a 40-kbp plasmid and several other potential mobile genetic elements detected that could also be part of conjugative elements or integrated prophages.</p
Image_1_Comparative Genomics of Novel Agrobacterium G3 Strains Isolated From the International Space Station and Description of Agrobacterium tomkonis sp. nov..pdf
Strains of Agrobacterium genomospecies 3 (i.e., genomovar G3 of the Agrobacterium tumefaciens species complex) have been previously isolated from diverse environments, including in association with plant roots, with algae, as part of a lignocellulose degrading community, from a hospital environment, as a human opportunistic pathogen, or as reported in this study, from a surface within the International Space Station. Polyphasic taxonomic methods revealed the relationship of Agrobacterium G3 strains to other Agrobacterium spp., which supports the description of a novel species. The G3 strains tested (n = 9) were phenotypically distinguishable among the strains from other genomospecies of the genus Agrobacterium. Phylogenetic analyses of the 16S rRNA gene, gyrB gene, multi-locus sequence analysis, and 1,089-gene core-genome gene concatenate concur that tested G3 strains belong to the Agrobacterium genus and they form a clade distinct from other validly described Agrobacterium species. The distinctiveness of this clade was confirmed by average nucleotide identity (ANI) and in silico digital DNA–DNA hybridization (dDDH) comparisons between the G3 tested strains and all known Agrobacterium species type strains, since obtained values were considerably below the 95% (ANI) and 70% (dDDH) thresholds used for the species delineation. According to the core-genome phylogeny and ANI comparisons, the closest relatives of G3 strains were Agrobacterium sp. strains UGM030330-04 and K599, members of a novel genomospecies we propose to call genomovar G21. Using this polyphasic approach, we characterized the phenotypic and genotypic synapomorphies of Agrobacterium G3, showing it is a bona fide bacterial species, well separated from previously named Agrobacterium species or other recognized genomic species. We thus propose the name Agrobacterium tomkonis for this species previously referred to as Agrobacterium genomospecies 3. The type strain of A. tomkonis is IIF1SW-B1T (= LMG 32164 = NRRL B-65602). Comparative genomic analysis show A. tomkonis strains have species-specific genes associated with secretion of secondary metabolites, including an exopolysaccharide and putative adhesins and resistance to copper. A. tomkonis specific gene functions notably relate to surface adhesion and could be involved to colonize nutrient-poor and harsh habitats. The A. tomkonis strains from the ISS showed presence of a 40-kbp plasmid and several other potential mobile genetic elements detected that could also be part of conjugative elements or integrated prophages.</p
Data_Sheet_4_Comparative Genomics of Novel Agrobacterium G3 Strains Isolated From the International Space Station and Description of Agrobacterium tomkonis sp. nov..xlsx
Strains of Agrobacterium genomospecies 3 (i.e., genomovar G3 of the Agrobacterium tumefaciens species complex) have been previously isolated from diverse environments, including in association with plant roots, with algae, as part of a lignocellulose degrading community, from a hospital environment, as a human opportunistic pathogen, or as reported in this study, from a surface within the International Space Station. Polyphasic taxonomic methods revealed the relationship of Agrobacterium G3 strains to other Agrobacterium spp., which supports the description of a novel species. The G3 strains tested (n = 9) were phenotypically distinguishable among the strains from other genomospecies of the genus Agrobacterium. Phylogenetic analyses of the 16S rRNA gene, gyrB gene, multi-locus sequence analysis, and 1,089-gene core-genome gene concatenate concur that tested G3 strains belong to the Agrobacterium genus and they form a clade distinct from other validly described Agrobacterium species. The distinctiveness of this clade was confirmed by average nucleotide identity (ANI) and in silico digital DNA–DNA hybridization (dDDH) comparisons between the G3 tested strains and all known Agrobacterium species type strains, since obtained values were considerably below the 95% (ANI) and 70% (dDDH) thresholds used for the species delineation. According to the core-genome phylogeny and ANI comparisons, the closest relatives of G3 strains were Agrobacterium sp. strains UGM030330-04 and K599, members of a novel genomospecies we propose to call genomovar G21. Using this polyphasic approach, we characterized the phenotypic and genotypic synapomorphies of Agrobacterium G3, showing it is a bona fide bacterial species, well separated from previously named Agrobacterium species or other recognized genomic species. We thus propose the name Agrobacterium tomkonis for this species previously referred to as Agrobacterium genomospecies 3. The type strain of A. tomkonis is IIF1SW-B1T (= LMG 32164 = NRRL B-65602). Comparative genomic analysis show A. tomkonis strains have species-specific genes associated with secretion of secondary metabolites, including an exopolysaccharide and putative adhesins and resistance to copper. A. tomkonis specific gene functions notably relate to surface adhesion and could be involved to colonize nutrient-poor and harsh habitats. The A. tomkonis strains from the ISS showed presence of a 40-kbp plasmid and several other potential mobile genetic elements detected that could also be part of conjugative elements or integrated prophages.</p
Data_Sheet_3_Comparative Genomics of Novel Agrobacterium G3 Strains Isolated From the International Space Station and Description of Agrobacterium tomkonis sp. nov..xlsx
Strains of Agrobacterium genomospecies 3 (i.e., genomovar G3 of the Agrobacterium tumefaciens species complex) have been previously isolated from diverse environments, including in association with plant roots, with algae, as part of a lignocellulose degrading community, from a hospital environment, as a human opportunistic pathogen, or as reported in this study, from a surface within the International Space Station. Polyphasic taxonomic methods revealed the relationship of Agrobacterium G3 strains to other Agrobacterium spp., which supports the description of a novel species. The G3 strains tested (n = 9) were phenotypically distinguishable among the strains from other genomospecies of the genus Agrobacterium. Phylogenetic analyses of the 16S rRNA gene, gyrB gene, multi-locus sequence analysis, and 1,089-gene core-genome gene concatenate concur that tested G3 strains belong to the Agrobacterium genus and they form a clade distinct from other validly described Agrobacterium species. The distinctiveness of this clade was confirmed by average nucleotide identity (ANI) and in silico digital DNA–DNA hybridization (dDDH) comparisons between the G3 tested strains and all known Agrobacterium species type strains, since obtained values were considerably below the 95% (ANI) and 70% (dDDH) thresholds used for the species delineation. According to the core-genome phylogeny and ANI comparisons, the closest relatives of G3 strains were Agrobacterium sp. strains UGM030330-04 and K599, members of a novel genomospecies we propose to call genomovar G21. Using this polyphasic approach, we characterized the phenotypic and genotypic synapomorphies of Agrobacterium G3, showing it is a bona fide bacterial species, well separated from previously named Agrobacterium species or other recognized genomic species. We thus propose the name Agrobacterium tomkonis for this species previously referred to as Agrobacterium genomospecies 3. The type strain of A. tomkonis is IIF1SW-B1T (= LMG 32164 = NRRL B-65602). Comparative genomic analysis show A. tomkonis strains have species-specific genes associated with secretion of secondary metabolites, including an exopolysaccharide and putative adhesins and resistance to copper. A. tomkonis specific gene functions notably relate to surface adhesion and could be involved to colonize nutrient-poor and harsh habitats. The A. tomkonis strains from the ISS showed presence of a 40-kbp plasmid and several other potential mobile genetic elements detected that could also be part of conjugative elements or integrated prophages.</p
Data_Sheet_1_Comparative Genomics of Novel Agrobacterium G3 Strains Isolated From the International Space Station and Description of Agrobacterium tomkonis sp. nov..xlsx
Strains of Agrobacterium genomospecies 3 (i.e., genomovar G3 of the Agrobacterium tumefaciens species complex) have been previously isolated from diverse environments, including in association with plant roots, with algae, as part of a lignocellulose degrading community, from a hospital environment, as a human opportunistic pathogen, or as reported in this study, from a surface within the International Space Station. Polyphasic taxonomic methods revealed the relationship of Agrobacterium G3 strains to other Agrobacterium spp., which supports the description of a novel species. The G3 strains tested (n = 9) were phenotypically distinguishable among the strains from other genomospecies of the genus Agrobacterium. Phylogenetic analyses of the 16S rRNA gene, gyrB gene, multi-locus sequence analysis, and 1,089-gene core-genome gene concatenate concur that tested G3 strains belong to the Agrobacterium genus and they form a clade distinct from other validly described Agrobacterium species. The distinctiveness of this clade was confirmed by average nucleotide identity (ANI) and in silico digital DNA–DNA hybridization (dDDH) comparisons between the G3 tested strains and all known Agrobacterium species type strains, since obtained values were considerably below the 95% (ANI) and 70% (dDDH) thresholds used for the species delineation. According to the core-genome phylogeny and ANI comparisons, the closest relatives of G3 strains were Agrobacterium sp. strains UGM030330-04 and K599, members of a novel genomospecies we propose to call genomovar G21. Using this polyphasic approach, we characterized the phenotypic and genotypic synapomorphies of Agrobacterium G3, showing it is a bona fide bacterial species, well separated from previously named Agrobacterium species or other recognized genomic species. We thus propose the name Agrobacterium tomkonis for this species previously referred to as Agrobacterium genomospecies 3. The type strain of A. tomkonis is IIF1SW-B1T (= LMG 32164 = NRRL B-65602). Comparative genomic analysis show A. tomkonis strains have species-specific genes associated with secretion of secondary metabolites, including an exopolysaccharide and putative adhesins and resistance to copper. A. tomkonis specific gene functions notably relate to surface adhesion and could be involved to colonize nutrient-poor and harsh habitats. The A. tomkonis strains from the ISS showed presence of a 40-kbp plasmid and several other potential mobile genetic elements detected that could also be part of conjugative elements or integrated prophages.</p
Data_Sheet_6_Comparative Genomics of Novel Agrobacterium G3 Strains Isolated From the International Space Station and Description of Agrobacterium tomkonis sp. nov..xlsx
Strains of Agrobacterium genomospecies 3 (i.e., genomovar G3 of the Agrobacterium tumefaciens species complex) have been previously isolated from diverse environments, including in association with plant roots, with algae, as part of a lignocellulose degrading community, from a hospital environment, as a human opportunistic pathogen, or as reported in this study, from a surface within the International Space Station. Polyphasic taxonomic methods revealed the relationship of Agrobacterium G3 strains to other Agrobacterium spp., which supports the description of a novel species. The G3 strains tested (n = 9) were phenotypically distinguishable among the strains from other genomospecies of the genus Agrobacterium. Phylogenetic analyses of the 16S rRNA gene, gyrB gene, multi-locus sequence analysis, and 1,089-gene core-genome gene concatenate concur that tested G3 strains belong to the Agrobacterium genus and they form a clade distinct from other validly described Agrobacterium species. The distinctiveness of this clade was confirmed by average nucleotide identity (ANI) and in silico digital DNA–DNA hybridization (dDDH) comparisons between the G3 tested strains and all known Agrobacterium species type strains, since obtained values were considerably below the 95% (ANI) and 70% (dDDH) thresholds used for the species delineation. According to the core-genome phylogeny and ANI comparisons, the closest relatives of G3 strains were Agrobacterium sp. strains UGM030330-04 and K599, members of a novel genomospecies we propose to call genomovar G21. Using this polyphasic approach, we characterized the phenotypic and genotypic synapomorphies of Agrobacterium G3, showing it is a bona fide bacterial species, well separated from previously named Agrobacterium species or other recognized genomic species. We thus propose the name Agrobacterium tomkonis for this species previously referred to as Agrobacterium genomospecies 3. The type strain of A. tomkonis is IIF1SW-B1T (= LMG 32164 = NRRL B-65602). Comparative genomic analysis show A. tomkonis strains have species-specific genes associated with secretion of secondary metabolites, including an exopolysaccharide and putative adhesins and resistance to copper. A. tomkonis specific gene functions notably relate to surface adhesion and could be involved to colonize nutrient-poor and harsh habitats. The A. tomkonis strains from the ISS showed presence of a 40-kbp plasmid and several other potential mobile genetic elements detected that could also be part of conjugative elements or integrated prophages.</p
Data_Sheet_2_Comparative Genomics of Novel Agrobacterium G3 Strains Isolated From the International Space Station and Description of Agrobacterium tomkonis sp. nov..docx
Strains of Agrobacterium genomospecies 3 (i.e., genomovar G3 of the Agrobacterium tumefaciens species complex) have been previously isolated from diverse environments, including in association with plant roots, with algae, as part of a lignocellulose degrading community, from a hospital environment, as a human opportunistic pathogen, or as reported in this study, from a surface within the International Space Station. Polyphasic taxonomic methods revealed the relationship of Agrobacterium G3 strains to other Agrobacterium spp., which supports the description of a novel species. The G3 strains tested (n = 9) were phenotypically distinguishable among the strains from other genomospecies of the genus Agrobacterium. Phylogenetic analyses of the 16S rRNA gene, gyrB gene, multi-locus sequence analysis, and 1,089-gene core-genome gene concatenate concur that tested G3 strains belong to the Agrobacterium genus and they form a clade distinct from other validly described Agrobacterium species. The distinctiveness of this clade was confirmed by average nucleotide identity (ANI) and in silico digital DNA–DNA hybridization (dDDH) comparisons between the G3 tested strains and all known Agrobacterium species type strains, since obtained values were considerably below the 95% (ANI) and 70% (dDDH) thresholds used for the species delineation. According to the core-genome phylogeny and ANI comparisons, the closest relatives of G3 strains were Agrobacterium sp. strains UGM030330-04 and K599, members of a novel genomospecies we propose to call genomovar G21. Using this polyphasic approach, we characterized the phenotypic and genotypic synapomorphies of Agrobacterium G3, showing it is a bona fide bacterial species, well separated from previously named Agrobacterium species or other recognized genomic species. We thus propose the name Agrobacterium tomkonis for this species previously referred to as Agrobacterium genomospecies 3. The type strain of A. tomkonis is IIF1SW-B1T (= LMG 32164 = NRRL B-65602). Comparative genomic analysis show A. tomkonis strains have species-specific genes associated with secretion of secondary metabolites, including an exopolysaccharide and putative adhesins and resistance to copper. A. tomkonis specific gene functions notably relate to surface adhesion and could be involved to colonize nutrient-poor and harsh habitats. The A. tomkonis strains from the ISS showed presence of a 40-kbp plasmid and several other potential mobile genetic elements detected that could also be part of conjugative elements or integrated prophages.</p
Estimating the Transfer Range of Plasmids Encoding Antimicrobial Resistance in a Wastewater Treatment Plant Microbial Community
Wastewater
treatment plants (WWTPs) have been suggested as reservoirs
and sources of antibiotic resistance genes (ARGs) in the environment.
In a WWTP ecosystem, human enteric and environmental bacteria are
mixed and exposed to pharmaceutical residues, potentially favoring
genetic exchange and thus ARG transmission. However, the contribution
of microbial communities in WWTPs to ARG dissemination remains poorly
understood. Here, we examined for the first time plasmid permissiveness
of an activated sludge microbial community by utilizing an established
fluorescent bioreporter system. The activated sludge microbial community
was challenged in standardized filter matings with one of three multidrug
resistance plasmids (pKJK5, pB10, and RP4) harbored by <i>Escherichia
coli</i> or <i>Pseudomonas putida</i>. Different donor–plasmid
combinations had distinct transfer frequencies, ranging from 3 to
50 conjugation events per 100000 cells of the WWTP microbial community.
In addition, transfer was observed to a broad phylogenetic range of
13 bacterial phyla with several taxa containing potentially pathogenic
species. Preferential transfer to taxa belonging to the predicted
evolutionary host range of the plasmids was not observed. Overall,
the ARG dissemination potential uncovered in WWTP communities calls
for a thorough risk assessment of ARG transmission across the wastewater
system, before identification of possible mitigation strategies
Additional file 2: of Oral administration of antibiotics increased the potential mobility of bacterial resistance genes in the gut of the fish Piaractus mesopotamicus
The file is the script used to find the genes co-occurring with the ARGs detected. (RB 4 kb