2 research outputs found
Copolymerization of Ethylene with Acrylate Monomers by Amide-Functionalized Ī±āDiimine Pd Catalysts
We report the ethylene
homopolymerization and ethylene/methyl-acrylate
(MA) and ethylene/acrylic-acid (AA) copolymerization behavior of a
series of (<i>N,N</i>ā²-diaryl-Ī±-diimine)ĀPd
catalysts that contain secondary amide (āCONHMe) or tertiary
amide (āCONMe<sub>2</sub>) substituents on the N-aryl rings,
including the āfirst-generationā catalysts {(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>-Ph)ĀNī»CMeCMeī»NĀ(2-CONHMe-6-<sup><i>i</i></sup>Pr-Ph)}ĀPdMeCl (<b>1a</b>,<b>a</b>ā²) and {(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>-Ph)ĀNī»CMeCMeī»NĀ(2-CONMe<sub>2</sub>-6-<sup><i>i</i></sup>Pr-Ph)}ĀPdMeCl (<b>1b</b>,<b>b</b>ā²) and the āsecond-generationā
catalysts [{2,6-(CHPh<sub>2</sub>)<sub>2</sub>-4-Me-Ph}ĀNī»CMeCMeī»NĀ(2-CONHMe-6-<sup><i>i</i></sup>Pr-Ph)]ĀPdMeCl (<b>1d</b>,<b>d</b>ā²) and [{2,6-(CHPh<sub>2</sub>)<sub>2</sub>-4-Me-Ph}ĀNī»CMeCMeī»NĀ(2-CONMe<sub>2</sub>-6-<sup><i>i</i></sup>Pr-Ph)]ĀPdMeCl (<b>1e</b>,<b>e</b>ā²). Activation of <b>1d</b>,<b>d</b>ā² and <b>1e</b>,<b>e</b>ā² by NaBĀ{3,5-(CF<sub>3</sub>)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>}<sub>4</sub> generates
active ethylene polymerization catalysts that produce highly branched
(77ā81 br/1000 C) polyethylenes with number-average molecular
weights (<i>M</i><sub>n</sub>s) in the range 26ā60
kDa. The replacement of two isopropyl units in <b>1a</b>,<b>a</b>ā² and <b>1b</b>,<b>b</b>ā² with
benzhydryl groups in <b>1d</b>,<b>d</b>ā² and <b>1e</b>,<b>e</b>ā² leads to a significant improvement
in ethylene homopolymerization performance. The secondary amide-functionalized
catalyst <b>1d</b>,<b>d</b>ā² incorporates ca. twice
as much MA and ca. three times as much AA as the <sup><i>i</i></sup>Pr-substituted catalyst [{2,6-(CHPh<sub>2</sub>)<sub>2</sub>-4-Me-Ph}ĀNī»CMeCMeī»NĀ(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>-Ph)]ĀPdMeCl (<b>1f</b>,<b>f</b>ā²)
in copolymerization with ethylene. The reactions of <b>1a</b>,<b>a</b>ā² and <b>1b</b>,<b>b</b>ā²
with metal salts that contain weakly coordinating anions lead to extrusion
of CH<sub>4</sub> and the formation of [{(Ī¼-Īŗ<sup>2</sup>-<i>N,N</i>ā²,Īŗ-<i>O</i>-Ī±-diimine)ĀPd}<sub>2</sub>(Ī¼-CH<sub>2</sub>)]<sup>2+</sup> complexes, in which
the amide carbonyl O atoms coordinate to Pd centers
Transformation of MetalāOrganic Framework Secondary Building Units into Hexanuclear Zr-Alkyl Catalysts for Ethylene Polymerization
We
report the stepwise and quantitative transformation of the Zr<sub>6</sub>(Ī¼<sub>3</sub>-O)<sub>4</sub>(Ī¼<sub>3</sub>-OH)<sub>4</sub>(HCO<sub>2</sub>)<sub>6</sub> nodes in Zr-BTC (MOF-808) to
the [Zr<sub>6</sub>(Ī¼<sub>3</sub>-O)<sub>4</sub>(Ī¼<sub>3</sub>-OH)<sub>4</sub>Cl<sub>12</sub>]<sup>6ā</sup> nodes
in ZrCl<sub>2</sub>-BTC, and then to the organometallic [Zr<sub>6</sub>(Ī¼<sub>3</sub>-O)<sub>4</sub>(Ī¼<sub>3</sub>-OLi)<sub>4</sub>R<sub>12</sub>]<sup>6ā</sup> nodes in ZrR<sub>2</sub>-BTC (R = CH<sub>2</sub>SiMe<sub>3</sub> or Me). Activation of ZrCl<sub>2</sub>-BTC with MMAO-12 generates ZrMe-BTC, which is an efficient
catalyst for ethylene polymerization. ZrMe-BTC displays unusual electronic
and steric properties compared to homogeneous Zr catalysts, possesses
multimetallic active sites, and produces high-molecular-weight linear
polyethylene. Metalāorganic framework nodes can thus be directly
transformed into novel single-site solid organometallic catalysts
without homogeneous analogs for polymerization reactions