22 research outputs found

    Reconfigurable Self-Assembly and Kinetic Control of Multiprogrammed DNA-Coated Particles

    No full text
    DNA is a unique molecule for storing information, which is used to provide particular biological instructions. Its function is primarily determined by the sequence of its four nucleobases, which have highly specific base-pairing interactions. This unique feature can be applied to direct the self-assembly of colloids by grafting DNA onto them. Due to the sequence-specific interactions, colloids can be programmed with multiple instructions. Here, we show that particles having multiple DNA strands with different melting profiles can undergo multiple phase transitions and reassemble into different crystalline structures in response to temperature. We include free DNA strands in the medium to selectively switch on and off DNA hybridization depending on temperature. We also demonstrate that DNA hybridization kinetics can be used as a means to achieve targeted assembling structure of colloids. These transitions impart a reconfigurability to colloids in which systems can be transformed an arbitrary number of times using thermal and kinetic control

    Reconfigurable Self-Assembly and Kinetic Control of Multiprogrammed DNA-Coated Particles

    No full text
    DNA is a unique molecule for storing information, which is used to provide particular biological instructions. Its function is primarily determined by the sequence of its four nucleobases, which have highly specific base-pairing interactions. This unique feature can be applied to direct the self-assembly of colloids by grafting DNA onto them. Due to the sequence-specific interactions, colloids can be programmed with multiple instructions. Here, we show that particles having multiple DNA strands with different melting profiles can undergo multiple phase transitions and reassemble into different crystalline structures in response to temperature. We include free DNA strands in the medium to selectively switch on and off DNA hybridization depending on temperature. We also demonstrate that DNA hybridization kinetics can be used as a means to achieve targeted assembling structure of colloids. These transitions impart a reconfigurability to colloids in which systems can be transformed an arbitrary number of times using thermal and kinetic control

    Reconfigurable Self-Assembly and Kinetic Control of Multiprogrammed DNA-Coated Particles

    No full text
    DNA is a unique molecule for storing information, which is used to provide particular biological instructions. Its function is primarily determined by the sequence of its four nucleobases, which have highly specific base-pairing interactions. This unique feature can be applied to direct the self-assembly of colloids by grafting DNA onto them. Due to the sequence-specific interactions, colloids can be programmed with multiple instructions. Here, we show that particles having multiple DNA strands with different melting profiles can undergo multiple phase transitions and reassemble into different crystalline structures in response to temperature. We include free DNA strands in the medium to selectively switch on and off DNA hybridization depending on temperature. We also demonstrate that DNA hybridization kinetics can be used as a means to achieve targeted assembling structure of colloids. These transitions impart a reconfigurability to colloids in which systems can be transformed an arbitrary number of times using thermal and kinetic control

    Reconfigurable Self-Assembly and Kinetic Control of Multiprogrammed DNA-Coated Particles

    No full text
    DNA is a unique molecule for storing information, which is used to provide particular biological instructions. Its function is primarily determined by the sequence of its four nucleobases, which have highly specific base-pairing interactions. This unique feature can be applied to direct the self-assembly of colloids by grafting DNA onto them. Due to the sequence-specific interactions, colloids can be programmed with multiple instructions. Here, we show that particles having multiple DNA strands with different melting profiles can undergo multiple phase transitions and reassemble into different crystalline structures in response to temperature. We include free DNA strands in the medium to selectively switch on and off DNA hybridization depending on temperature. We also demonstrate that DNA hybridization kinetics can be used as a means to achieve targeted assembling structure of colloids. These transitions impart a reconfigurability to colloids in which systems can be transformed an arbitrary number of times using thermal and kinetic control

    Reconfigurable Self-Assembly and Kinetic Control of Multiprogrammed DNA-Coated Particles

    No full text
    DNA is a unique molecule for storing information, which is used to provide particular biological instructions. Its function is primarily determined by the sequence of its four nucleobases, which have highly specific base-pairing interactions. This unique feature can be applied to direct the self-assembly of colloids by grafting DNA onto them. Due to the sequence-specific interactions, colloids can be programmed with multiple instructions. Here, we show that particles having multiple DNA strands with different melting profiles can undergo multiple phase transitions and reassemble into different crystalline structures in response to temperature. We include free DNA strands in the medium to selectively switch on and off DNA hybridization depending on temperature. We also demonstrate that DNA hybridization kinetics can be used as a means to achieve targeted assembling structure of colloids. These transitions impart a reconfigurability to colloids in which systems can be transformed an arbitrary number of times using thermal and kinetic control

    High-Density DNA Coatings on Carboxylated Colloids by DMTMM- and Azide-Mediated Coupling Reactions

    No full text
    DNA-mediated colloidal interactions provide a powerful strategy for the self-assembly of ordered superstructures. We report a practical and efficient two-step chemical method to graft DNA brushes onto carboxylated particles, which resolves the previously reported issues such as irreversible aggregation, inhomogeneous coating, and relatively low DNA density that can hinder colloidal crystallization. First, carboxylated particles are functionalized with heterobifunctional poly­(ethylene glycol) (NH2-PEGn-N3) by 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM)-activated esterification of carboxylic groups and amide coupling. Then, dibenzocyclooctyne (DBCO)-functionalized DNA strands are grafted onto the pegylated particles through strain-promoted alkyne-azide cycloaddition (SPAAC) on azide groups. The homogeneous PEG brushes provide dispersion stability to the particles and clickable functional groups, resulting in DNA coatings of 1 100 000 DNA per 1 μm particle or 1 DNA per 2.9 nm2, about five times higher than previously reported. The DNA-coated particles exhibit a sharp association–dissociation transition and readily self-assemble into colloidal crystals upon annealing. In addition, fluorinated particles and lens-shaped particles with carboxylate groups are successfully grafted with DNA strands in this manner. Janus particles are also functionalized with DNA strands selectively on one of the two faces. Owing to the anisotropic attraction, the DNA-coated Janus particles self-assemble into self-limiting aggregates

    High-Density PEO‑<i>b</i>‑DNA Brushes on Polymer Particles for Colloidal Superstructures

    No full text
    We demonstrate a method to create high-density DNA coatings on colloidal particles that can be used for DNA-mediated self-assembly of single- and multiple-component colloidal crystals. First, we modify an amphiphilic diblock copolymer consisting of a hydrophobic polystyrene (PS) block and a hydrophilic poly­(ethylene oxide) (PEO) block with azide functional groups at the end (poly­(ethylene oxide)-N<sub>3</sub>). Then, we introduce the diblock copolymers into an aqueous suspension of colloidal polymer particles swollen with a solvent. The hydrophobic PS anchoring block is incorporated into the swollen polymer spheres and physically trapped when the solvent is removed, resulting in a dense PEO polymer brush with azide functional end groups. Finally, single-stranded DNA strands with sticky ends are attached to the azide groups using strain-promoted azide–alkyne cycloaddition (SPAAC, a copper-free click chemistry). This procedure results in a high areal coverage of up to 225 000 DNA strands on 1-μm-diameter particles. The ssDNA-coated particles with sticky ends can readily form either face-centered-cubic (fcc) or cesium chloride (CsCl) crystal structures when annealed just below the melting temperature of the DNA-coated particles

    High-Density DNA Coatings on Carboxylated Colloids by DMTMM- and Azide-Mediated Coupling Reactions

    No full text
    DNA-mediated colloidal interactions provide a powerful strategy for the self-assembly of ordered superstructures. We report a practical and efficient two-step chemical method to graft DNA brushes onto carboxylated particles, which resolves the previously reported issues such as irreversible aggregation, inhomogeneous coating, and relatively low DNA density that can hinder colloidal crystallization. First, carboxylated particles are functionalized with heterobifunctional poly­(ethylene glycol) (NH2-PEGn-N3) by 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM)-activated esterification of carboxylic groups and amide coupling. Then, dibenzocyclooctyne (DBCO)-functionalized DNA strands are grafted onto the pegylated particles through strain-promoted alkyne-azide cycloaddition (SPAAC) on azide groups. The homogeneous PEG brushes provide dispersion stability to the particles and clickable functional groups, resulting in DNA coatings of 1 100 000 DNA per 1 μm particle or 1 DNA per 2.9 nm2, about five times higher than previously reported. The DNA-coated particles exhibit a sharp association–dissociation transition and readily self-assemble into colloidal crystals upon annealing. In addition, fluorinated particles and lens-shaped particles with carboxylate groups are successfully grafted with DNA strands in this manner. Janus particles are also functionalized with DNA strands selectively on one of the two faces. Owing to the anisotropic attraction, the DNA-coated Janus particles self-assemble into self-limiting aggregates

    High-Density PEO‑<i>b</i>‑DNA Brushes on Polymer Particles for Colloidal Superstructures

    No full text
    We demonstrate a method to create high-density DNA coatings on colloidal particles that can be used for DNA-mediated self-assembly of single- and multiple-component colloidal crystals. First, we modify an amphiphilic diblock copolymer consisting of a hydrophobic polystyrene (PS) block and a hydrophilic poly­(ethylene oxide) (PEO) block with azide functional groups at the end (poly­(ethylene oxide)-N<sub>3</sub>). Then, we introduce the diblock copolymers into an aqueous suspension of colloidal polymer particles swollen with a solvent. The hydrophobic PS anchoring block is incorporated into the swollen polymer spheres and physically trapped when the solvent is removed, resulting in a dense PEO polymer brush with azide functional end groups. Finally, single-stranded DNA strands with sticky ends are attached to the azide groups using strain-promoted azide–alkyne cycloaddition (SPAAC, a copper-free click chemistry). This procedure results in a high areal coverage of up to 225 000 DNA strands on 1-μm-diameter particles. The ssDNA-coated particles with sticky ends can readily form either face-centered-cubic (fcc) or cesium chloride (CsCl) crystal structures when annealed just below the melting temperature of the DNA-coated particles
    corecore