5 research outputs found

    Simple, Fast, and Scalable Reverse-Offset Printing of Micropatterned Copper Nanowire Electrodes with Sub-10 μm Resolution

    No full text
    Copper nanowires (CuNWs) possess key characteristics for realizing flexible transparent electronics. High-quality CuNW micropatterns with high resolution and uniform thickness are required to realize integrated transparent electronic devices. However, patterning high-aspect-ratio CuNWs is challenging because of their long length, exceeding the target pattern dimension. This work reports a novel reverse-offset printing technology that enables the sub-10 μm high-resolution micropatterning of CuNW transparent conducting electrodes (TCEs). The CuNW ink for reverse-offset printing was formulated to control viscoelasticity, cohesive force, and adhesion by adjusting the ligands, solvents, surface energy modifiers, and leveling additives. An inexpensive commercial adhesive handroller achieved a simple, fast, and scalable micropatterning of CuNW TCEs. Easy production of high-quality CuNW micropatterns with various curvatures and shapes was possible, regardless of the printing direction. The reverse-offset-printed CuNW micropatterns exhibited a minimum of 7 μm line width and excellent pattern qualities such as fine line spacing, sharp edge definition, and outstanding pattern uniformity. In addition, they exhibited excellent sheet resistance, high optical transparency, outstanding mechanical durability, and long-term stability. Flexible light-emitting diode (LED) circuits, transparent heaters, and organic LEDs (OLEDs) can be fabricated using high-resolution reverse-offset-printed CuNW micropatterns for applications in flexible transparent electronic devices

    High-Quality Microprintable and Stretchable Conductors for High-Performance 5G Wireless Communication

    No full text
    With the advent of 5G wireless and Internet of Things technologies, flexible and stretchable printed circuit boards (PCBs) should be designed to address all the specifications necessary to receive signal transmissions, maintaining the signal integrity, and providing electrical connections. Here, we propose a silver nanoparticle (AgNP)/silver nanowire (AgNW) hybrid conductor and high-quality microprinting technology for fabricating flexible and stretchable PCBs in high-performance 5G wireless communication. A simple and low-cost reverse offset printing technique using a commercial adhesive hand-roller was adapted to ensure high-resolution and excellent pattern quality. The AgNP/AgNW micropatterns were fabricated in various line widths, from 5 μm to 5 mm. They exhibited excellent pattern qualities, such as fine line spacing, clear edge definition and outstanding pattern uniformity. After annealing via intense pulsed light irradiation, they showed outstanding electrical resistivity (15.7 μΩ cm). Moreover, they could withstand stretching up to a strain of 90% with a small change in resistance. As a demonstration of their practical application, the AgNP/AgNW micropatterns were used to fabricate 5G communication antennas that exhibited excellent wireless signal processing at operating frequencies in the C-band (4–8 GHz). Finally, a wearable sensor fabricated with these AgNP/AgNW micropatterns could successfully detected fine finger movements in real time with excellent sensitivity

    High-Quality Microprintable and Stretchable Conductors for High-Performance 5G Wireless Communication

    No full text
    With the advent of 5G wireless and Internet of Things technologies, flexible and stretchable printed circuit boards (PCBs) should be designed to address all the specifications necessary to receive signal transmissions, maintaining the signal integrity, and providing electrical connections. Here, we propose a silver nanoparticle (AgNP)/silver nanowire (AgNW) hybrid conductor and high-quality microprinting technology for fabricating flexible and stretchable PCBs in high-performance 5G wireless communication. A simple and low-cost reverse offset printing technique using a commercial adhesive hand-roller was adapted to ensure high-resolution and excellent pattern quality. The AgNP/AgNW micropatterns were fabricated in various line widths, from 5 μm to 5 mm. They exhibited excellent pattern qualities, such as fine line spacing, clear edge definition and outstanding pattern uniformity. After annealing via intense pulsed light irradiation, they showed outstanding electrical resistivity (15.7 μΩ cm). Moreover, they could withstand stretching up to a strain of 90% with a small change in resistance. As a demonstration of their practical application, the AgNP/AgNW micropatterns were used to fabricate 5G communication antennas that exhibited excellent wireless signal processing at operating frequencies in the C-band (4–8 GHz). Finally, a wearable sensor fabricated with these AgNP/AgNW micropatterns could successfully detected fine finger movements in real time with excellent sensitivity

    Impact of Aryl End Group Engineering of Donor Polymers on the Morphology and Efficiency of Halogen-Free Solvent-Processed Nonfullerene Organic Solar Cells

    No full text
    End group engineering on the side chain of π-conjugated donor polymers is explored as an effective way to develop efficient photovoltaic devices. In this work, we designed and synthesized three new π-conjugated polymers (PBDT-BZ-1, PBDT-S-BZ, and PBDT-BZ-F) with terminal aryl end groups on the side chain of chlorine-substituted benzo­[1,2-b:4,5b′]­dithiophene (BDT). End group modifications showed notable changes in energy levels, dipole moments, exciton lifetimes, energy losses, and charge transport properties. Remarkably, the three new polymers paired with IT-4F (halogen-free solvent processed/toluene:DPE) displayed high power conversion efficiencies (PCEs) compared to a polymer (PBDT-Al-5) without a terminal end group (PCE of 7.32%). Interestingly, PBDT-S-BZ:IT-4F (PCE of 13.73%) showed a higher PCE than the benchmark PM7:IT-4F. The improved performance of PBDT-S-BZ well correlates with its improved charge mobility, well-interdigitated surface morphology, and high miscibility with a low Flory–Huggins interaction parameter (1.253). Thus, we successfully established a correlation between the end group engineering and bulk properties of the new polymers for realizing the high performance of halogen-free nonfullerene organic solar cells

    Low-Temperature Cross-Linkable Hole Transport Materials for Solution-Processed Quantum Dot and Organic Light-Emitting Diodes with High Efficiency and Color Purity

    No full text
    Cross-linkable hole transport materials (HTMs) are ideal for improving the performance of solution-processed quantum dot light-emitting diodes (QLEDs) and phosphorescent light-emitting diodes (OLEDs). However, previously developed cross-linkable HTMs possessed poor hole transport properties, high cross-linking temperatures, and long curing times. To achieve efficient cross-linkable HTMs with high mobility, low cross-linking temperature, and short curing time, we designed and synthesized a series of low-temperature cross-linkable HTMs comprising dibenzofuran (DBF) and 4-divinyltriphenylamine (TPA) segments for highly efficient solution-processed QLEDs and OLEDs. The introduction of divinyl-functionalized TPA in various positions of the DBF core remarkably affected their chemical, physical, and electrochemical properties. In particular, cross-linked 4-(dibenzo­[b,d]­furan-3-yl)-N,N-bis­(4-vinylphenyl)­aniline (3-CDTPA) exhibited a deep highest occupied molecular orbital energy level (5.50 eV), high hole mobility (2.44 × 10–4 cm2 V–1 s–1), low cross-linking temperature (150 °C), and short curing time (30 min). Furthermore, a green QLED with 3-CDTPA as the hole transport layer (HTL) exhibited a notable maximum external quantum efficiency (EQEmax) of 18.59% with a remarkable maximum current efficiency (CEmax) of 78.48 cd A–1. In addition, solution-processed green OLEDs with 3-CDTPA showed excellent device performance with an EQEmax of 15.61%, a CEmax of 52.51 cd A–1, and outstanding CIE­(x, y) color coordinates of (0.29, 0.61). This is one of the highest reported EQEs and CEs with high color purity for green solution-processed QLEDs and OLEDs using a divinyl-functionalized cross-linked HTM as the HTL. We believe that this study provides a new strategy for designing and synthesizing practical cross-linakable HTMs with enhanced performance for highly efficient solution-processed QLEDs and OLEDs
    corecore