1,588 research outputs found

    The Changing Role of the Management Accountant in the UK - an Institutional Logics Perspective

    Get PDF
    This study explores the changing role of the management accountant in the UK in the post-financial crisis period. There is little consensus arising from the existing academic research in this area in so far as various terminology has been used to describe the role of the management accountant, including the terms bean counter, business partner, number cruncher, hybrid accountant, business advocate and polymath. Implicit to the role change terminology discussion is the continuing debate around the impact of changes in IT, digitalisation and increasing automation on the role of the management accountant. The approach adopted for this study is qualitative, drawing upon the institutional logics framework. The focus for this study is the individual actors rather than structures. The study is based upon interviews that took place with 17 CIMA accountants in 2021 and 2022. Secondary data evaluates changes in the CIMA professional accounting syllabi since the late 1980s onwards. Findings indicate that the pace of change has been exponential rather than incremental in terms of the impact of changing technology. The relationship between IT and accounting is getting closer. Technology-related skills seem to be changing much more rapidly than core accounting and finance skills. The secondary data shows that IT skills have steadily been permutated through the CIMA professional accounting syllabus.Bean counting tasks have not gone away but they are increasingly being automated. Business partnering is the way ahead, although a layering of roles seems to be the best way to describe the change. This study offers valuable and original insight into the changing role of the management accountant in the UK, finding that technology is the key driver of change

    Acoustofluidics 9: Modelling and applications of planar resonant devices for acoustic particle manipulation

    No full text
    This article introduces the design, construction and applications of planar resonant devices for particle and cell manipulation. These systems rely on the pistonic action of a piezoelectric layer to generate a one dimensional axial variation in acoustic pressure through a system of acoustically tuned layers. The resulting acoustic standing wave is dominated by planar variations in pressure causing particles to migrate to planar pressure nodes (or antinodes depending on particle and fluid properties). The consequences of lateral variations in the fields are discussed, and rules for designing resonators with high energy density within the appropriate layer for a given drive voltage presente

    The development and deployment of formal methods in the UK

    Full text link
    UK researchers have made major contributions to the technical ideas underpinning formal approaches to the specification and development of computer systems. Perhaps as a consequence of this, some of the significant attempts to deploy theoretical ideas into practical environments have taken place in the UK. The authors of this paper have been involved in formal methods for many years and both have tracked a significant proportion of the whole story. This paper both lists key ideas and indicates where attempts were made to use the ideas in practice. Not all of these deployment stories have been a complete success and an attempt is made to tease out lessons that influence the probability of long-term impact.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Mode-switching: a new technique for electronically varying the agglomeration position in an acoustic particle manipulator

    No full text
    Acoustic radiation forces offer a means of manipulating particles within a fluid. Much interest in recent years has focussed on the use of radiation forces in microfluidic (or “lab on a chip”) devices. Such devices are well matched to the use of ultrasonic standing waves in which the resonant dimensions of the chamber are smaller than the ultrasonic wavelength in use. However, such devices have typically been limited to moving particles to one or two predetermined planes, whose positions are determined by acoustic pressure nodes/anti-nodes set up in the ultrasonic standing wave. In most cases devices have been designed to move particles to either the centre or (more recently) the side of a flow channel using ultrasonic frequencies that produce a half or quarter wavelength over the channel, respectively.It is demonstrated here that by rapidly switching back and forth between half and quarter wavelength frequencies – mode-switching – a new agglomeration position is established that permits beads to be brought to any arbitrary point between the half and quarter-wave nodes. This new agglomeration position is effectively a position of stable equilibrium. This has many potential applications, particularly in cell sorting and manipulation. It should also enable precise control of agglomeration position to be maintained regardless of manufacturing tolerances, temperature variations, fluid medium characteristics and particle concentration

    An Experimental and Numerical Investigation of Drag Reduction Through Biomimetic Modelling

    Get PDF
    This paper characterises flow around a circular cylinder and investigates the potential of a non-smooth surface to reduce air resistance in a Reynolds number range between Red = 8.09 104 and Red = 2.02 105. The two- and three-dimensional numerical simulations were performed using a steady-state solution and the Reynolds-averaged Navier-Stokes (RANS) approaches. Three different mesh designs and four turbulence models with various treatments were assessed and compared against experimental data. A total of 26 uneven preparations in the two-dimensional analysis and two riblet structures in the three-dimensional analysis were designed to investigate the effect of drag reduction. The results reported hold the potential of uneven structures to reduce the air resistance in the case of a circular cylinder. This research further demonstrates that engineering applications can benefit from mimicking nature's details and functions

    A Numerical Bubbly Flow Investigation of Drag Reduction for Underwater Vehicles

    Get PDF
    This paper discusses the numerical investigation of dispersed bubbly flow within the boundary layer of a fully submerged axisymmetric body in horizontal position. The aim is to analyse the influence of injection position and bubble parameters on the drag reduction behaviour. The numerical study is conducted with the commercial CFD package ANSYS Fluent using the Eulerian-Eulerian modelling approach. Several sets of simulations are carried out with air injection velocities in the rage of 1 m/s to 15 m/s, injection locations between 0 and 0.5 m, and bubble diameters from 0.1 mm to 2 mm. In order to obtain the percentage drag reduction the results are correlated with a model without air injection. The simulations demonstrate a different behaviour between small and large bubble diameters of 0.1 mm and 2 mm respectively. Small bubbles archive drag reduction rates around 10% almost independent from the injection velocity and position, while large bubbles are highly affected by those parameters. The maximum drag reduction of 20.67% is achieved by injecting bubbles of 2 mm diameter with a velocity of 12.5 m/s at the tip of the prow nose. It is presented that the drag reduction increases with increasing injection velocity and bubble diameter. These parameters enable the bubbles to build up a continuous film across large parts of the hull which is required for a sufficient drag reduction
    • …
    corecore