202 research outputs found

    Spitzer View of Massive Star Formation in the Tidally Stripped Magellanic Bridge

    Get PDF
    The Magellanic Bridge is the nearest low-metallicity, tidally stripped environment, offering a unique high-resolution view of physical conditions in merging and forming galaxies. In this paper we present analysis of candidate massive young stellar objects (YSOs), i.e., {\it in situ, current} massive star formation (MSF) in the Bridge using {\it Spitzer} mid-IR and complementary optical and near-IR photometry. While we definitely find YSOs in the Bridge, the most massive are 10M\sim10 M_\odot, 45M\ll45 M_\odot found in the Large Magellanic Cloud (LMC). The intensity of MSF in the Bridge also appears decreasing, as the most massive YSOs are less massive than those formed in the past. To investigate environmental effects on MSF, we have compared properties of massive YSOs in the Bridge to those in the LMC. First, YSOs in the Bridge are apparently less embedded than in the LMC: 81% of Bridge YSOs show optical counterparts, compared to only 56% of LMC sources with the same range of mass, circumstellar dust mass, and line-of-sight extinction. Circumstellar envelopes are evidently more porous or clumpy in the Bridge's low-metallicity environment. Second, we have used whole samples of YSOs in the LMC and the Bridge to estimate the probability of finding YSOs at a given \hi\ column density, N(HI). We found that the LMC has 3×\sim3\times higher probability than the Bridge for N(HI) >10×1020>10\times10^{20} cm2^{-2}, but the trend reverses at lower N(HI). Investigating whether this lower efficiency relative to HI is due to less efficient molecular cloud formation, or less efficient cloud collapse, or both, will require sensitive molecular gas observations.Comment: 41 pages, 20 figures, 6 tables; accepted for publication in ApJ; several figures are in low resolution due to the size limit here and a high resolution version can be downloaded via http://www.astro.virginia.edu/~cc5ye/ms_bridge20140215.pd

    Spitzer View of Young Massive Stars in the LMC HII Complexes. II. N159

    Get PDF
    The HII complex N159 in the Large Magellanic Cloud (LMC) is used to study massive star formation in different environments, as it contains three giant molecular clouds (GMCs) that have similar sizes and masses but exhibit different intensities of star formation. We identify candidate massive young stellar objects (YSOs) using infrared photometry, and model their SEDs to constrain mass and evolutionary state. Good fits are obtained for less evolved Type I, I/II, and II sources. Our analysis suggests that there are massive embedded YSOs in N159B, a maser source, and several ultracompact HII regions. Massive O-type YSOs are found in GMCs N159-E and N159-W, which are associated with ionized gas, i.e., where massive stars formed a few Myr ago. The third GMC, N159-S, has neither O-type YSOs nor evidence of previous massive star formation. This correlation between current and antecedent formation of massive stars suggests that energy feedback is relevant. We present evidence that N159-W is forming YSOs spontaneously, while collapse in N159-E may be triggered. Finally, we compare star formation rates determined from YSO counts with those from integrated H-alpha and 24 micron luminosities and expected from gas surface densities. Detailed dissection of extragalactic GMCs like the one presented here is key to revealing the physics underlying commonly used star formation scaling laws.Comment: 60 pages, 11 figures. Accepted for publication in Astrophysical Journa

    Coupling Non-Gravitational Fields with Simplicial Spacetimes

    Full text link
    The inclusion of source terms in discrete gravity is a long-standing problem. Providing a consistent coupling of source to the lattice in Regge Calculus (RC) yields a robust unstructured spacetime mesh applicable to both numerical relativity and quantum gravity. RC provides a particularly insightful approach to this problem with its purely geometric representation of spacetime. The simplicial building blocks of RC enable us to represent all matter and fields in a coordinate-free manner. We provide an interpretation of RC as a discrete exterior calculus framework into which non-gravitational fields naturally couple with the simplicial lattice. Using this approach we obtain a consistent mapping of the continuum action for non-gravitational fields to the Regge lattice. In this paper we apply this framework to scalar, vector and tensor fields. In particular we reconstruct the lattice action for (1) the scalar field, (2) Maxwell field tensor and (3) Dirac particles. The straightforward application of our discretization techniques to these three fields demonstrates a universal implementation of coupling source to the lattice in Regge calculus.Comment: 10 pages, no figures, Latex, fixed typos and minor corrections

    Optimizing energy costs in a zinc and lead mine

    Get PDF
    Boliden Tara Mines Ltd. consumed 184.7 GWh of electricity in 2014, equating to over 1% of the national demand of Ireland or approximately 35,000 homes. Ireland's industrial electricity prices, at an average of 13 c/KWh in 2014, are amongst the most expensive in Europe. Cost effective electricity procurement is ever more pressing for businesses to remain competitive. In parallel, the proliferation of intelligent devices has led to the industrial Internet of Things paradigm becoming mainstream. As more and more devices become equipped with network connectivity, smart metering is fast becoming a means of giving energy users access to a rich array of consumption data. These modern sensor networks have facilitated the development of applications to process, analyse, and react to continuous data streams in real-time. Subsequently, future procurement and consumption decisions can be informed by a highly detailed evaluation of energy usage. With these considerations in mind, this paper uses variable energy prices from Ireland’s Single Electricity Market, along with smart meter sensor data, to simulate the scheduling of an industrial-sized underground pump station in Tara Mines. The objective is to reduce the overall energy costs whilst still functioning within the system's operational constraints. An evaluation using real-world electricity prices and detailed sensor data for 2014 demonstrates significant savings of up to 10.72% over the year compared to the existing control systems

    The Simplicial Ricci Tensor

    Full text link
    The Ricci tensor (Ric) is fundamental to Einstein's geometric theory of gravitation. The 3-dimensional Ric of a spacelike surface vanishes at the moment of time symmetry for vacuum spacetimes. The 4-dimensional Ric is the Einstein tensor for such spacetimes. More recently the Ric was used by Hamilton to define a non-linear, diffusive Ricci flow (RF) that was fundamental to Perelman's proof of the Poincare conjecture. Analytic applications of RF can be found in many fields including general relativity and mathematics. Numerically it has been applied broadly to communication networks, medical physics, computer design and more. In this paper, we use Regge calculus (RC) to provide the first geometric discretization of the Ric. This result is fundamental for higher-dimensional generalizations of discrete RF. We construct this tensor on both the simplicial lattice and its dual and prove their equivalence. We show that the Ric is an edge-based weighted average of deficit divided by an edge-based weighted average of dual area -- an expression similar to the vertex-based weighted average of the scalar curvature reported recently. We use this Ric in a third and independent geometric derivation of the RC Einstein tensor in arbitrary dimension.Comment: 19 pages, 2 figure

    The Evolution of Massive YSOs in the LMC: Part I. Identification and Spectral Classification

    Full text link
    We present and categorize Spitzer IRS spectra of 294 objects in the Large Magellanic Cloud (LMC) to create the largest and most complete catalog of massive young stellar object (YSO) spectra in the LMC. Target sources were identified from infrared photometry and multi-wavelength images indicative of young, massive stars highly enshrouded in their natal gas and dust clouds. Our sample primarily consists of 277 objects we identify as having spectral features indicative of embedded YSOs. The remaining sources are comprised of 7 C-rich evolved sources, 8 sources dominated by broad silicate emission, and 1 source with multiple broad emission features. Those with YSO-like spectra show a range of spectral features including polycyclic aromatic hydrocarbon emission, deep silicate absorption, fine-structure lines, and ice absorption features. Based upon the relative strengths of these features, we have classified the YSO candidates into several distinct categories using the widely-used statistical procedure known as principal component analysis. We propose that these categories represent a spectrum of evolutionary stages during massive YSO formation. We conclude that massive pre-main sequence stars spend a majority of their massive, embedded lives emitting in the UV. Half of the sources in our study have features typical of compact HII regions, suggesting that massive YSOs can create a detectable compact HII region half-way through the formation time present in our sample. This study also provides a check on commonly used source-selection procedures including the use of photometry to identify YSOs. We determine a high success rate (>95%) of identifying objects with YSO-like spectra can be achieved through careful use of infrared CMDs, SEDs, and image inspections.Comment: Accepted to The Astrophysical Journa

    The Far-Infrared Spectral Energy Distributions of X-ray-selected Active Galaxies

    Get PDF
    [Abridged] We present ISO far-infrared (IR) observations of 21 hard X-ray selected AGN from the HEAO-1 A2 sample. We compare the far-IR to X-ray spectral energy distributions (SEDs) of this sample with various radio and optically selected AGN samples. The hard-X-ray selected sample shows a wider range of optical/UV shapes extending to redder near-IR colors. The bluer objects are Seyfert 1s, while the redder AGN are mostly intermediate or type 2 Seyferts. This is consistent with a modified unification model in which the amount of obscuring material increases with viewing angle and may be clumpy. Such a scenario, already suggested by differing optical/near-IR spectroscopic and X-ray AGN classifications, allows for different amounts of obscuration of the continuum emission in different wavebands and of the broad emission line region which results in a mixture of behaviors for AGN with similar optical emission line classifications. The resulting limits on the column density of obscuring material through which we are viewing the redder AGN are 100 times lower than for the standard optically thick torus models. The resulting decrease in optical depth of the obscuring material allows the AGN to heat more dust at larger radial distances. We show that an AGN-heated, flared, dusty disk with mass 10^9 solar and size of few hundred pc is able to generate optical-far-IR SEDs which reproduce the wide range of SEDs present in our sample with no need for an additional starburst component to generate the long-wavelength, cooler part of the IR continuum.Comment: 40 pages, 14 figures, accepted for publication in Astrophysical Journal, V. 590, June 10, 200

    HST Observations of New Horizontal Branch Structures in the Globular Cluster omega Centauri

    Full text link
    The globular cluster omega Centauri contains the largest known population of very hot horizontal branch (HB) stars. We have used the Hubble Space Telescope to obtain a far-UV/optical color-magnitude diagram of three fields in omega Cen. We find that over 30% of the HB objects are ``extreme'' HB or hot post-HB stars. The hot HB stars are not concentrated toward the cluster center, which argues against a dynamical origin for them. A wide gap in the color distribution of the hot HB stars appears to correspond to gaps found earlier in several other clusters. This suggests a common mechanism, probably related to giant branch mass loss. The diagram contains a significant population of hot sub-HB stars, which we interpret as the ``blue-hook'' objects predicted by D'Cruz et al. (1996a). These are produced by late He-flashes in stars which have undergone unusually large giant branch mass loss. omega Cen has a well-known spread of metal abundance, and our observations are consistent with a giant branch mass loss efficiency which increases with metallicity.Comment: Submitted to ApJ, 12 pages, including 3 figures, also available at http://www.physics.usyd.edu.au/~noella/research.htm

    The Murchison Widefield Array: Design Overview

    Get PDF
    The Murchison Widefield Array (MWA) is a dipole-based aperture array synthesis telescope designed to operate in the 80-300 MHz frequency range. It is capable of a wide range of science investigations, but is initially focused on three key science projects. These are detection and characterization of 3-dimensional brightness temperature fluctuations in the 21cm line of neutral hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10, solar imaging and remote sensing of the inner heliosphere via propagation effects on signals from distant background sources,and high-sensitivity exploration of the variable radio sky. The array design features 8192 dual-polarization broad-band active dipoles, arranged into 512 tiles comprising 16 dipoles each. The tiles are quasi-randomly distributed over an aperture 1.5km in diameter, with a small number of outliers extending to 3km. All tile-tile baselines are correlated in custom FPGA-based hardware, yielding a Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point spread function (PSF) quality. The correlated data are calibrated in real time using novel position-dependent self-calibration algorithms. The array is located in the Murchison region of outback Western Australia. This region is characterized by extremely low population density and a superbly radio-quiet environment,allowing full exploitation of the instrumental capabilities.Comment: 9 pages, 5 figures, 1 table. Accepted for publication in Proceedings of the IEE
    corecore