14,458 research outputs found
The Judicial Behavior of Justice Souter in Criminal Cases and the Denial of a Conservative Counterrevolution
[Excerpt] “The following article documents the judicial career of Justice David Souter from his time served as an attorney general and state judge in New Hampshire until his recent tenure on the U.S. Supreme Court. Based upon his written opinions and individual votes, Justice Souter clearly has evolved into a more liberal jurist than ideological conservatives would have preferred in the area of criminal justice. Over the course of his judicial career, Justice Souter has gained respect as an intellectual scholar by attempting to completely understand both sides of a dispute and applying precedent and legal rules in a flexible—albeit technical—manner in the hope of achieving justice. However, Justice Souter may be remembered most as the justice who disappointed ideological conservatives by failing to complete a conservative counterrevolution that had begun with President Richard Nixon‘s first appointment to the Court in 1969.
SATMC: Spectral Energy Distribution Analysis Through Markov Chains
We present the general purpose spectral energy distribution (SED) fitting
tool SED Analysis Through Markov Chains (SATMC). Utilizing Monte Carlo Markov
Chain (MCMC) algorithms, SATMC fits an observed SED to SED templates or models
of the user's choice to infer intrinsic parameters, generate confidence levels
and produce the posterior parameter distribution. Here we describe the key
features of SATMC from the underlying MCMC engine to specific features for
handling SED fitting. We detail several test cases of SATMC, comparing results
obtained to traditional least-squares methods, which highlight its accuracy,
robustness and wide range of possible applications. We also present a sample of
submillimetre galaxies that have been fitted using the SED synthesis routine
GRASIL as input. In general, these SMGs are shown to occupy a large volume of
parameter space, particularly in regards to their star formation rates which
range from ~30-3000 M_sun yr^-1 and stellar masses which range from
~10^10-10^12 M_sun. Taking advantage of the Bayesian formalism inherent to
SATMC, we also show how the fitting results may change under different
parametrizations (i.e., different initial mass functions) and through
additional or improved photometry, the latter being crucial to the study of
high-redshift galaxies.Comment: 17 pages, 11 figures, MNRAS accepte
AFM imaging and plasmonic detection of organic thin-films deposited on nanoantenna arrays
In this study, atomic force microscopy (AFM) imaging has been used to reveal the preferential deposition of organic thin-films on patterned nanoantenna array surfaces - identifying the localised formation of both monolayer and multilayer films of octadecanethiol (ODT) molecules, depending on the concentration of the solutions used. Reliable identification of this selective deposition process has been demonstrated for the first time, to our knowledge. Organic thin-films, in particular films of ODT molecules, were deposited on plasmonic resonator surfaces through a chemi-sorption process - using different solution concentrations and immersion times. The nanoantennas based on gold asymmetric-split ring resonator (A-SRR) geometries were fabricated on zinc selenide (ZnSe) substrates using electron-beam lithography and the lift-off technique. Use of the plasmonic resonant-coupling technique has enabled the detection of ODT molecules deposited from a dilute, micromolar (1 M) solution concentration - with attomole sensitivity of deposited material per A-SRR – a value that is three orders of magnitude lower in concentration than previously reported. Additionally, on resonance, the amplitude of the molecular vibrational resonance peaks is typically an order of magnitude larger than that for the non-resonant coupling. Fourier-transform infrared (FTIR) spectroscopy shows molecule specific spectral responses – with magnitudes corresponding to the different film thicknesses deposited on the resonator surfaces. The experimental results are supported by numerical simulation
Deposition of Organic Molecules on Gold Nanoantennas for Sensing
The deposition of organic molecules on gold nanoantennas is reported through chemisorption for sensing in the midinfrared (mid-IR) spectral range. The specific nanostructures are gold asymmetric-split ring resonators (A-SRRs) based on circular-geometry with two different ‘arc’ lengths. The plasmonic resonant coupling technique was used to match the vibrational responses of the targeted molecules for their enhanced detection. Gold nanostructures are functionalised through chemisorption of octadecanethiol (ODT) in ethanol solution. The molecular vibrational responses were measured using a microscope coupled Fourier Transform Infrared (FTIR) spectroscopy. The experimental findings are closely supported using FDTD simulation. The modified nanoantennas surfaces are capable of supporting wide range of organic-sensing applications
Mental Rotation of Dynamic, Three-Dimensional Stimuli by 3-Month-Old Infants
Mental rotation involves transforming a mental image of an object so as to accurately predict how the object would look if it were rotated in space. This study examined mental rotation in male and female 3-month-olds, using the stimuli and paradigm developed by Moore and Johnson (2008). Infants were habituated to a video of a three-dimensional object rotating back and forth through a 240° angle around the vertical axis. After habituation, infants were tested both with videos of the same object rotating through the previously unseen 120° angle, and with the mirror image of that display. Unlike females, who fixated the test displays for approximately equal durations, males spent significantly more time fixating the familiar object than the mirror-image object. Because familiarity preferences like this emerge when infants are relatively slow to process a habituation stimulus, the data support the interpretation that mental rotation of dynamic three-dimensional stimuli is relatively difficult—but possible—for 3-month-old males. Interpretation of the sex differences observed in 3- and 5-month-olds’ performances is discussed
Mental Rotation in Human Infants: A Sex Difference
A sex difference on mental-rotation tasks has been demonstrated repeatedly, but not in children less than 4 years of age. To demonstrate mental rotation in human infants, we habituated 5-month-old infants to an object revolving through a 240° angle. In successive test trials, infants saw the habituation object or its mirror image revolving through a previously unseen 120° angle. Only the male infants appeared to recognize the familiar object from the new perspective, a feat requiring mental rotation. These data provide evidence for a sex difference in mental rotation of an object through three-dimensional space, consistently seen in adult populations
- …