41,283 research outputs found
Sputtering yield measurements at glancing incidence using a quartz crystal microbalance
Low energy sputtering yields at grazing incidence have been investigated experimentally using a quartz crystal microbalance (QCM) technique. This method involved precoating the QCM with a thin film of the desired target material and relating the resonance frequency shift directly to mass loss during ion bombardment. A highly focused, low divergence ion beam provided a well defined incidence angle. Focusing most of the ion current on the center of the target allowed for higher sensitivity by taking into account the radial mass sensitivity of the QCM. Measurements of Mo, Cu, and W sputtering yields were taken for low energy (80–1000 eV) Xe+ and Ar+ to validate this experimental method. The target films ranged from 3.5 to 8.0 µm in thickness and were deposited so that their crystal structure and density would match those of the bulk material as closely as possible. These properties were characterized using a combination of scanning electron microscope imagery, profilometry, and x-ray diffraction. At normal incidence, the sputtering yields demonstrated satisfactory agreement with previously published work. At angles of incidence up to 40° off normal, the data agreed well with predictions from existing theoretical models. Sputtering yields were found to increase by a factor of 1.6 over this range. The optimum angle for sputtering occurred at 55°, after which the yields rapidly decreased. Measurements were taken up to 80° from the surface normal
Improved Bounds on Information Dissemination by Manhattan Random Waypoint Model
With the popularity of portable wireless devices it is important to model and
predict how information or contagions spread by natural human mobility -- for
understanding the spreading of deadly infectious diseases and for improving
delay tolerant communication schemes. Formally, we model this problem by
considering moving agents, where each agent initially carries a
\emph{distinct} bit of information. When two agents are at the same location or
in close proximity to one another, they share all their information with each
other. We would like to know the time it takes until all bits of information
reach all agents, called the \textit{flood time}, and how it depends on the way
agents move, the size and shape of the network and the number of agents moving
in the network.
We provide rigorous analysis for the \MRWP model (which takes paths with
minimum number of turns), a convenient model used previously to analyze mobile
agents, and find that with high probability the flood time is bounded by
, where agents move on an
grid. In addition to extensive simulations, we use a data set of
taxi trajectories to show that our method can successfully predict flood times
in both experimental settings and the real world.Comment: 10 pages, ACM SIGSPATIAL 2018, Seattle, U
Near-field angular distributions of high velocity ions for low-power hall thrusters
Experimental angular distributions of high-energy primary ions in the near-field region of a small Hall thruster between 50-200 mm downstream of the thruster exit plane at a range of centerline angles have been determined using a highly-collimated, energy-selective diagnostic probe. The measurements reveal a wide angular distribution of ions exiting the thruster channel and the formation of a strong, axially-directed jet of ions along the thruster centerline. Comparisons are made to other experimental determinations as applicable
Noncontact modulation calorimetry of metallic liquids in low Earth orbit
Noncontact modulation calorimetry using electromagnetic heating and radiative heat loss under ultrahigh-vacuum conditions has been applied to levitated solid, liquid, and metastable liquid samples. This experiment requires a reduced gravity environment over an extended period of time and allows the measurement of several thermophysical properties, such as the enthalpy of fusion and crystallization, specific heat, total hemispherical emissivity, and effective thermal conductivity with high precision as a function of temperature. From the results on eutectic glass forming Zr-based alloys thermodynamic functions are obtained which describe the glass-forming ability of these alloys
Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities
The quality factors of modes in nearly identical GaAs and
Al_{0.18}Ga_{0.82}As microdisks are tracked over three wavelength ranges
centered at 980 nm, 1460 nm, and 1600 nm, with quality factors measured as high
as 6.62x10^5 in the 1600-nm band. After accounting for surface scattering, the
remaining loss is due to sub-bandgap absorption in the bulk and on the
surfaces. We observe the absorption is, on average, 80 percent greater in
AlGaAs than in GaAs and in both materials is 540 percent higher at 980 nm than
at 1600nm.Comment: 4 pages, 2 figures, 1 table, minor changes to disucssion of Qrad and
Urbach tai
Robust topology optimization of three-dimensional photonic-crystal band-gap structures
We perform full 3D topology optimization (in which "every voxel" of the unit
cell is a degree of freedom) of photonic-crystal structures in order to find
optimal omnidirectional band gaps for various symmetry groups, including fcc
(including diamond), bcc, and simple-cubic lattices. Even without imposing the
constraints of any fabrication process, the resulting optimal gaps are only
slightly larger than previous hand designs, suggesting that current photonic
crystals are nearly optimal in this respect. However, optimization can discover
new structures, e.g. a new fcc structure with the same symmetry but slightly
larger gap than the well known inverse opal, which may offer new degrees of
freedom to future fabrication technologies. Furthermore, our band-gap
optimization is an illustration of a computational approach to 3D dispersion
engineering which is applicable to many other problems in optics, based on a
novel semidefinite-program formulation for nonconvex eigenvalue optimization
combined with other techniques such as a simple approach to impose symmetry
constraints. We also demonstrate a technique for \emph{robust} topology
optimization, in which some uncertainty is included in each voxel and we
optimize the worst-case gap, and we show that the resulting band gaps have
increased robustness to systematic fabrication errors.Comment: 17 pages, 9 figures, submitted to Optics Expres
A novel boundary element method using surface conductive absorbers for full-wave analysis of 3-D nanophotonics
Fast surface integral equation (SIE) solvers seem to be ideal approaches for
simulating 3-D nanophotonic devices, as these devices generate fields both in
an interior channel and in the infinite exterior domain. However, many devices
of interest, such as optical couplers, have channels that can not be terminated
without generating reflections. Generating absorbers for these channels is a
new problem for SIE methods, as the methods were initially developed for
problems with finite surfaces. In this paper we show that the obvious approach
for eliminating reflections, making the channel mildly conductive outside the
domain of interest, is inaccurate. We describe a new method, in which the
absorber has a gradually increasing surface conductivity; such an absorber can
be easily incorporated in fast integral equation solvers. Numerical experiments
from a surface-conductivity modified FFT-accelerated PMCHW-based solver are
correlated with analytic results, demonstrating that this new method is orders
of magnitude more effective than a volume absorber, and that the smoothness of
the surface conductivity function determines the performance of the absorber.
In particular, we show that the magnitude of the transition reflection is
proportional to 1/L^(2d+2), where L is the absorber length and d is the order
of the differentiability of the surface conductivity function.Comment: 10 page
Diode laser 87Rb optical pumping in an evacuated wall-coated cell
The evacuated wall coated sealed cell coupled with diode laser optical pumping offers a number of attractive potential advantages for use in Rb or Cs atomic frequency standards. An investigation of systematic effects is required to explore possible limitations of the technique. The use of diode laser optical pumping of 87 Rb in an evacuated wall coated sealed cell is presented. Experimental results/discussion to be presented include the signal strength and line broadening of the 0 - 0 hyperfine resonance as a function of light intensity for the D1 optical transitions (F - F prime) - (2 1 prime) and (2 - 2 prime), shift of the 0 - 0 hyperfine frequency as a function of laser intensity and de-tuning from optical resonance, and diode laser frequency stabilization techniques
Nonlinear preferential rewiring in fixed-size networks as a diffusion process
We present an evolving network model in which the total numbers of nodes and
edges are conserved, but in which edges are continuously rewired according to
nonlinear preferential detachment and reattachment. Assuming power-law kernels
with exponents alpha and beta, the stationary states the degree distributions
evolve towards exhibit a second order phase transition - from relatively
homogeneous to highly heterogeneous (with the emergence of starlike structures)
at alpha = beta. Temporal evolution of the distribution in this critical regime
is shown to follow a nonlinear diffusion equation, arriving at either pure or
mixed power-laws, of exponents -alpha and 1-alpha
Rigorous sufficient conditions for index-guided mode in microstructured dielectric waveguides
We derive a sufficient condition for the existence of index-guided modes in a
very general class of dielectric waveguides, including photonic-crystal fibers
(arbitrary periodic claddings, such as ``holey fibers''), anisotropic
materials, and waveguides with periodicity along the propagation direction.
This condition provides a rigorous guarantee of cutoff-free index-guided modes
in any such structure where the core is formed by increasing the index of
refraction (e.g. removing a hole). It also provides a weaker guarantee of
guidance in cases where the refractive index is increased ``on average''
(precisely defined). The proof is based on a simple variational method,
inspired by analogous proofs of localization for two-dimensional attractive
potentials in quantum mechanics.Comment: 15 page
- …
