2,493 research outputs found
Inferences on Criminality Based on Appearance
In our research study, we tested whether people can tell if someone is a criminal or not based on a photograph of their face. The importance of the subject lies in the fact that many people are unfairly judged as criminals based on stereotypes such as race. In this study, we wished to eliminate race and see if any purely facial characteristics are stereotypically defined as criminal or if a person’s initial judgment is an accurate predictor of someone’s character. Extensive research has been dedicated to finding if people have facial features that portray some characteristic about them and this study will focus on criminality. Through the use of a face modulating program, neutral faced photographs were shown to participants with a question that asked if the person in the photograph is a criminal or not. The data gathered will be beneficial in either identifying facial features that are associated with criminals or that show the interesting phenomena of gut instinct
PM2.5 Pollution and Temperature Inversions: A Case Study in St. Louis, MO
Wintertime temperature inversions are partially responsible for some of the worst historical air pollution events as cold air pools are favorable for prolonged poor air quality episodes. The St. Louis metropolitan area in Missouri-Illinois has relevant problems with particulate pollution yet is under-studied. This case study examines the characteristics of an inversion layer along with additional meteorological parameters and their effects on PM2.5 air quality in St. Louis from November 22 to December 3, 2015. During the selected period, November 26 to December 1 PM2.5 Air Quality Index (AQI) daily values often exceeded levels the Environmental Protection Agency classifies as unhealthy for sensitive groups. Shallow surface temperature inversions were most common on less polluted days while strong temperature inversions with a base height around 950 mb persisted on more heavily polluted days. Variability in surface wind speed, wind direction, and relative humidity occurred mostly on less polluted days while values were consistent on more heavily polluted days. Precipitation only happened on the most heavily polluted days but showed no great impact of reducing pollution. Winds from the south on November 26 suggested transport of excess particulate pollutant was the cause of unhealthy PM2.5 levels that day, not temperature inversions. Strong temperature inversions contained these pollutants in St. Louis on November 27 to November 30. A surface pressure minimum north of St. Louis on December 1 produced a substantial change in wind direction on November 30, influencing eventual dispersion of pollutants. Further research is necessary to help fill in the knowledge gaps about air quality in the Midwest
A Thermodynamic-Based Interpretation of Protein Expression Heterogeneity in Different Glioblastoma Multiforme Tumors Identifies Tumor-Specific Unbalanced Processes
We describe a thermodynamic-motivated, information theoretic analysis of proteomic data collected from a series of 8 glioblastoma multiforme (GBM) tumors. GBMs are considered here as prototypes of heterogeneous cancers. That heterogeneity is viewed here as manifesting in different unbalanced biological processes that are associated with thermodynamic-like constraints. The analysis yields a molecular description of a stable steady state that is common across all tumors. It also resolves molecular descriptions of unbalanced processes that are shared by several tumors, such as hyperactivated phosphoprotein signaling networks. Further, it resolves unbalanced processes that provide unique classifiers of tumor subgroups. The results of the theoretical interpretation are compared against those of statistical multivariate methods and are shown to provide a superior level of resolution for identifying unbalanced processes in GBM tumors. The identification of specific constraints for each GBM tumor suggests tumor-specific combination therapies that may reverse this imbalance
Exploring the effects of various growth conditions on gene expression of mechanosensitive ion channels in Escherichia coli
In rapidly changing environmental conditions, bacterial mechanosensitive ion channels are responsible for ensuring cell survival. Bacterial mechanosensitive channels gate in response to membrane tension in order to relieve intracellular pressure, prior to cell lysis. The most well-studied bacterial mechanosensitive channels include the mechanosensitive channel of large (MscL) and small (MscS) conductance from Escherichia coli (E. coli), both of which gate in response to tension. In E. coli, there are seven mechanosensitive ion channel genes: MscL, MscS, and five additional genes that are members of the MscS superfamily. Of these seven genes, six have been shown to gate directly in response to tension applied to the cellular membrane. We determine each channel’s expression in varying growth conditions like salt concentration, pH, and temperature. To determine each gene’s contribution to survival, we utilized qPCR and compared mRNA levels of each individual channel to a standard ribosomal gene, RpoB, within each growth condition. The relative expression of each channel provides insight into the specific roles that each of these channels fulfills during the survival response of the cell. Throughout our data, we see that MscL plays an active role in cell survival across various conditions. We rarely see any indication of YnaI expression, with the exception of cells cultured at lower temperatures. Apart from these channels, we observe similarities in expression levels between MscS, MscM, and YbdG as well as between MscK and YbiO across various conditions. This research shows that the expression of mechanosensitive channels fluctuates based on the growth environment
Locomotor muscle fatigue is not critically regulated after prior upper body exercise
This study examined the effects of prior upper body exercise on subsequent high-intensity cycling exercise tolerance and associated changes in neuromuscular function and perceptual responses. Eight men performed three fixed work-rate (85% peak power) cycling tests: 1) to the limit of tolerance (CYC); 2) to the limit of tolerance after prior high-intensity arm-cranking exercise (ARM-CYC); and 3) without prior exercise and for an equal duration as ARM-CYC (ISOTIME). Peripheral fatigue was assessed via changes in potentiated quadriceps twitch force during supramaximal electrical femoral nerve stimulation. Voluntary activation was assessed using twitch interpolation during maximal voluntary contractions. Cycling time during ARM-CYC and ISOTIME (4.33 ± 1.10 min) was 38% shorter than during CYC (7.46 ± 2.79 min) (P < 0.001). Twitch force decreased more after CYC (−38 ± 13%) than ARM-CYC (−26 ± 10%) (P = 0.004) and ISOTIME (−24 ± 10%) (P = 0.003). Voluntary activation was 94 ± 5% at rest and decreased after CYC (89 ± 9%, P = 0.012) and ARM-CYC (91 ± 8%, P = 0.047). Rating of perceived exertion for limb discomfort increased more quickly during cycling in ARM-CYC [1.83 ± 0.46 arbitrary units (AU)/min] than CYC (1.10 ± 0.38 AU/min, P = 0.003) and ISOTIME (1.05 ± 0.43 AU/min, P = 0.002), and this was correlated with the reduced cycling time in ARM-CYC (r = −0.72, P = 0.045). In conclusion, cycling exercise tolerance after prior upper body exercise is potentially mediated by central fatigue and intolerable levels of sensory perception rather than a critical peripheral fatigue limit
High-sensitivity spin-based electrometry with an ensemble of nitrogen-vacancy centers in diamond
We demonstrate a spin-based, all-dielectric electrometer based on an ensemble of nitrogen-vacancy (NV[superscript −]) defects in diamond. An applied electric field causes energy-level shifts symmetrically away from the NV[superscript −]'s degenerate triplet states via the Stark effect; this symmetry provides immunity to temperature fluctuations allowing for shot-noise-limited detection. Using an ensemble of NV[superscript −]s, we demonstrate shot-noise-limited sensitivities approaching 1 (V/cm)/√Hz under ambient conditions, at low frequencies (<10 Hz), and over a large dynamic range (20 dB). A theoretical model for the ensemble of NV[superscript −]s fits well with measurements of the ground-state electric susceptibility parameter 〈k[subscript ⊥]〉. Implications of spin-based, dielectric sensors for micron-scale electric-field sensing are discussed.United States. National Aeronautics and Space Administration. Office of Chief Technologist (Space Technology Research Fellowship)United States. Air Force Office of Scientific Research. Presidential Early Career Award in Science and Engineerin
Accomplice, patron, go-between? A role to play with poor migrant Qur’anic students in northern Nigeria
What does it mean to conduct ethnographic research in a context where inequalities are pervasive? Drawing on experiences conducting research with poor migrant Qur’anic students (almajirai) in Kano, northern Nigeria, this article explores the challenges of establishing productive and ethical research relationships with informants whose social and socioeconomic status is significantly lower than that of the researcher. The article argues that large socioeconomic and educational inequalities demand a rethinking of the subject positions available to researchers in such contexts. In the article, I consider in turn my roles as an ‘accomplice’ of exclusionary elite behaviour, as a ‘patron’ for my informants, and as a ‘go-between’ facilitating access for them to otherwise inaccessible ‘social microworlds’
GeneMill: A 21st century platform for innovation
GeneMill officially launched on 4th February 2016 and is an open access academic facility located at The University of Liverpool that has been established for the high-throughput construction and testing of synthetic DNA constructs. GeneMill provides end-to-end design, construction and phenotypic characterization of small to large gene constructs or genetic circuits/pathways for academic and industrial applications. Thus, GeneMill is equipping the scientific community with easy access to the validated tools required to explore the possibilities of Synthetic Biology
Emerging climate-driven disturbance processes: Widespread mortality associated with snow-to-rain transitions across 10° of latitude and half the range of a climate-threatened conifer
Climate change is causing rapid changes to forest disturbance regimes worldwide. While the consequences of climate change for existing disturbance processes, like fires, are relatively well studied, emerging drivers of disturbance such as snow loss and subsequent mortality are much less documented. As the climate warms, a transition from winter snow to rain in high latitudes will cause significant changes in environmental conditions such as soil temperatures, historically buffered by snow cover. The Pacific coast of North America is an excellent test case, as mean winter temperatures are currently at the snow–rain threshold and have been warming for approximately 100 years post-Little Ice Age. Increased mortality in a widespread tree species in the region has been linked to warmer winters and snow loss. Here, we present the first high-resolution range map of this climate-sensitive species, Callitropsis nootkatensis (yellow-cedar), and document the magnitude and location of observed mortality across Canada and the United States. Snow cover loss related mortality spans approximately 10° latitude (half the native range of the species) and 7% of the overall species range and appears linked to this snow–rain transition across its range. Mortality is commonly >70% of basal area in affected areas, and more common where mean winter temperatures is at or above the snow–rain threshold (>0 °C mean winter temperature). Approximately 50% of areas with a currently suitable climate for the species (< 2 °C) are expected to warm beyond that threshold by the late 21st century. Regardless of climate change scenario, little of the range which is expected to remain suitable in the future (e.g., a climatic refugia) is in currently protected landscapes (<1–9%). These results are the first documentation of this type of emerging climate disturbance and highlight the difficulties of anticipating novel disturbance processes when planning for conservation and management.Ye
- …