39 research outputs found
Towards an understanding of the structure and function of MTA1
Gene expression is controlled through the recruitment of large coregulator complexes to specific gene loci to regulate chromatin structure by modifying epigenetic marks on DNA and histones. Metastasis-associated protein 1 (MTA1) is an essential component of the nucleosome remodelling and deacetylase (NuRD) complex that acts as a scaffold protein to assemble enzymatic activity and nucleosome targeting proteins. MTA1 consists of four characterised domains, a number of interaction motifs, and regions that are predicted to be intrinsically disordered. The ELM2-SANT domain is one of the best-characterised regions of MTA1, which recruits histone deacetylase 1 (HDAC1) and activates the enzyme in the presence of inositol phosphate. MTA1 is highly upregulated in several types of aggressive tumours and is therefore a possible target for cancer therapy. In this review, we summarise the structure and function of the four domains of MTA1 and discuss the possible functions of less well-characterised regions of the protein
Targeting Class I Histone Deacetylases in a "Complex" Environment.
Histone deacetylase (HDAC) inhibitors are proven anticancer therapeutics and have potential in the treatment of many other diseases including HIV infection, Alzheimer's disease, and Friedreich's ataxia. A problem with the currently available HDAC inhibitors is that they have limited specificity and target multiple deacetylases. Designing isoform-selective inhibitors has proven challenging due to similarities in the structure and chemistry of HDAC active sites. However, the fact that HDACs 1, 2, and 3 are recruited to several large multi-subunit complexes, each with particular biological functions, raises the possibility of specifically inhibiting individual complexes. This may be assisted by recent structural and functional information about the assembly of these complexes. Here, we review the available structural information and discuss potential targeting strategies
Targeting Class I Histone Deacetylases in a "Complex" Environment.
Histone deacetylase (HDAC) inhibitors are proven anticancer therapeutics and have potential in the treatment of many other diseases including HIV infection, Alzheimer's disease, and Friedreich's ataxia. A problem with the currently available HDAC inhibitors is that they have limited specificity and target multiple deacetylases. Designing isoform-selective inhibitors has proven challenging due to similarities in the structure and chemistry of HDAC active sites. However, the fact that HDACs 1, 2, and 3 are recruited to several large multi-subunit complexes, each with particular biological functions, raises the possibility of specifically inhibiting individual complexes. This may be assisted by recent structural and functional information about the assembly of these complexes. Here, we review the available structural information and discuss potential targeting strategies
BIM-Mediated Membrane Insertion of the BAK Pore Domain Is an Essential Requirement for Apoptosis
BAK activation represents a key step during apoptosis, but how it converts into a mitochondria-permeabilizing pore remains unclear. By further delineating the structural rearrangements involved, we reveal that BAK activation progresses through a series of independent steps: BH3-domain exposure, N-terminal change, oligomerization, and membrane insertion. Employing a "BCL-XL-addiction" model, we show that neutralization of BCL-XL by the BH3 mimetic ABT-737 resulted in death only when cells were reconstituted with BCL-XL:BAK, but not BCL-2/ BCL-XL:BIM complexes. Although this resembles the indirect model, release of BAK from BCL-XL did not result in spontaneous adoption of the pore conformation. Commitment to apoptosis required association of the direct activator BIM with oligomeric BAK promoting its conversion to a membrane-inserted pore. The sequential nature of this cascade provides multiple opportunities for other BCL-2 proteins to interfere with or promote BAK activation and unites aspects of the indirect and direct activation models
Insights into the recruitment of class IIa Histone Deacetylases (HDACs) to the SMRT/NCoR transcriptional repression complex
Class
IIa histone deacetylases
repress
transcription of target genes. However their
mechanism of action is poorly understood since
they exhibit very low levels of deacetylase
activity. The class IIa HDACs are associated
with the SMRT / NCoR re
pression complexes
and this may, at least in part,
a
ccount for their
repressive activity.
However, the molecular
mechanism of recruitment to co
-
repressor
proteins has yet to be established. Here we
show that a repeated peptide motif
present in
both SMRT and NCoR is sufficient to mediate
specific interaction
, with micromolar affinity, with all the class IIa HDACs (HDACs 4, 5, 7 &
9). Mutations in the consensus motif abrogate
binding. Mutational analysis of HDAC4
suggests that the peptide interacts in the
vicinity of the active site of the enzyme and
requires
the “closed” conformation of the zinc
-
binding loop on the surface of the enzyme.
Together these findings represent the first
insights into the molecular
mechanism of
recruitment of class IIa HDACs
to
the SMRT
/
NCoR repression complexes
Lysine-14 acetylation of histone H3 in chromatin confers resistance to the deacetylase and demethylase activities of an epigenetic silencing complex.
The core CoREST complex (LHC) contains histone deacetylase HDAC1 and histone demethylase LSD1 held together by the scaffold protein CoREST. Here, we analyze the purified LHC with modified peptide and reconstituted semisynthetic mononucleosome substrates. LHC demethylase activity toward methyl-Lys4 in histone H3 is strongly inhibited by H3 Lys14 acetylation, and this appears to be an intrinsic property of the LSD1 subunit. Moreover, the deacetylase selectivity of LHC unexpectedly shows a marked preference for H3 acetyl-Lys9 versus acetyl-Lys14 in nucleosome substrates but this selectivity is lost with isolated acetyl-Lys H3 protein. This diminished activity of LHC to Lys-14 deacetylation in nucleosomes is not merely due to steric accessibility based on the pattern of sensitivity of the LHC enzymatic complex to hydroxamic acid-mediated inhibition. Overall, these studies have revealed how a single Lys modification can confer a composite of resistance in chromatin to a key epigenetic enzyme complex involved in gene silencing
Backbone resonance assignment of the BCL6-BTB/POZ domain
BCL6 is a transcriptional repressor. Two domains of the protein, the N-terminal BTB-POZ domain and the RD2 domain are responsible for recruitment of co-repressor molecules and histone deacetylases. The BTB-POZ domain is found in a large and diverse range of proteins that play important roles in development, homeostasis and neoplasia. Crystal structures of several BTB-POZ domains, including BCL6 have been determined. The BTB-POZ domain of BCL6 not only mediates dimerisation but is also responsible for recruitment of co-repressors such as SMRT, NCOR and BCOR. Interestingly both SMRT and BCOR bind to the same site within the BCL6 BTB-POZ domain despite having very different primary sequences. Since both peptides and small molecules have been shown to bind to the co-repressor binding site it would suggest that the BTB_POZ domain is a suitable target for drug discovery. Here we report near complete backbone 15N, 13C and 1H assignments for the BTB-POZ domain of BCL6 to assist in the analysis of binding modes for small molecules
Lysine-14 acetylation of histone H3 in chromatin confers resistance to the deacetylase and demethylase activities of an epigenetic silencing complex.
The core CoREST complex (LHC) contains histone deacetylase HDAC1 and histone demethylase LSD1 held together by the scaffold protein CoREST. Here, we analyze the purified LHC with modified peptide and reconstituted semisynthetic mononucleosome substrates. LHC demethylase activity toward methyl-Lys4 in histone H3 is strongly inhibited by H3 Lys14 acetylation, and this appears to be an intrinsic property of the LSD1 subunit. Moreover, the deacetylase selectivity of LHC unexpectedly shows a marked preference for H3 acetyl-Lys9 versus acetyl-Lys14 in nucleosome substrates but this selectivity is lost with isolated acetyl-Lys H3 protein. This diminished activity of LHC to Lys-14 deacetylation in nucleosomes is not merely due to steric accessibility based on the pattern of sensitivity of the LHC enzymatic complex to hydroxamic acid-mediated inhibition. Overall, these studies have revealed how a single Lys modification can confer a composite of resistance in chromatin to a key epigenetic enzyme complex involved in gene silencing
Backbone resonance assignment of the BCL6-BTB/POZ domain
BCL6 is a transcriptional repressor. Two domains of the protein, the N-terminal BTB-POZ domain and the RD2 domain are responsible for recruitment of co-repressor molecules and histone deacetylases. The BTB-POZ domain is found in a large and diverse range of proteins that play important roles in development, homeostasis and neoplasia. Crystal structures of several BTB-POZ domains, including BCL6 have been determined. The BTB-POZ domain of BCL6 not only mediates dimerisation but is also responsible for recruitment of co-repressors such as SMRT, NCOR and BCOR. Interestingly both SMRT and BCOR bind to the same site within the BCL6 BTB-POZ domain despite having very different primary sequences. Since both peptides and small molecules have been shown to bind to the co-repressor binding site it would suggest that the BTB_POZ domain is a suitable target for drug discovery. Here we report near complete backbone 15N, 13C and 1H assignments for the BTB-POZ domain of BCL6 to assist in the analysis of binding modes for small molecules
Histone deacetylase 3 indirectly modulates tubulin acetylation
Histone deacetylase 3 (HDAC3), a member of the Class I subfamily of HDACs, is found in both the nucleus and the cytoplasm. Its roles in the nucleus have been well characterized, but its cytoplasmic roles are still not elucidated fully. We found that blocking HDAC3 activity using MI192, a compound specific for HDAC3, modulated tubulin acetylation in the human prostate cancer cell line PC3. A brief 1 h treatment of PC3 cells with MI192 significantly increased levels of tubulin acetylation and ablated the dynamic behaviour of microtubules in live cells. siRNA-mediated knockdown (KD) of HDAC3 in PC3 cells, significantly increased levels of tubulin acetylation, and overexpression reduced it. However, the active HDAC3-silencing mediator of retinoic and thyroid receptors (SMRT)-deacetylase-activating domain (DAD) complex did not directly deacetylate tubulin in vitro. These data suggest that HDAC3 indirectly modulates tubulin acetylation