5 research outputs found

    Dehydroalkylative Activation of CNN- and PNN-Pincer Ruthenium Catalysts for Ester Hydrogenation

    No full text
    Ruthenium–pincer complexes bearing CNN- and PNN-pincer ligands with diethyl- or diisopropylamino side groups, which have previously been reported to be active precatalysts for ester hydrogenation, undergo dehydroalkylation on heating in the presence of tricyclohexylphosphine to release ethane or propane, giving five-coordinate ruthenium(0) complexes containing a nascent imine functional group. Ethane or propane is also released under the conditions of catalytic ester hydrogenation, and time-course studies show that this release is concomitant with the onset of catalysis. A new PNN-pincer ruthenium(0)–imine complex is a highly active catalyst for ester hydrogenation at room temperature, giving up to 15 500 turnovers with no added base. This complex was shown to react reversibly at room temperature with two equivalents of hydrogen to give a ruthenium­(II)–dihydride complex, where the imine functionality has been hydrogenated to give a protic amine side group. These observations have potentially broad implications for the identities of catalytic intermediates in ester hydrogenation and related transformations

    Dehydroalkylative Activation of CNN- and PNN-Pincer Ruthenium Catalysts for Ester Hydrogenation

    No full text
    Ruthenium–pincer complexes bearing CNN- and PNN-pincer ligands with diethyl- or diisopropylamino side groups, which have previously been reported to be active precatalysts for ester hydrogenation, undergo dehydroalkylation on heating in the presence of tricyclohexylphosphine to release ethane or propane, giving five-coordinate ruthenium(0) complexes containing a nascent imine functional group. Ethane or propane is also released under the conditions of catalytic ester hydrogenation, and time-course studies show that this release is concomitant with the onset of catalysis. A new PNN-pincer ruthenium(0)–imine complex is a highly active catalyst for ester hydrogenation at room temperature, giving up to 15 500 turnovers with no added base. This complex was shown to react reversibly at room temperature with two equivalents of hydrogen to give a ruthenium­(II)–dihydride complex, where the imine functionality has been hydrogenated to give a protic amine side group. These observations have potentially broad implications for the identities of catalytic intermediates in ester hydrogenation and related transformations

    Dehydroalkylative Activation of CNN- and PNN-Pincer Ruthenium Catalysts for Ester Hydrogenation

    No full text
    Ruthenium–pincer complexes bearing CNN- and PNN-pincer ligands with diethyl- or diisopropylamino side groups, which have previously been reported to be active precatalysts for ester hydrogenation, undergo dehydroalkylation on heating in the presence of tricyclohexylphosphine to release ethane or propane, giving five-coordinate ruthenium(0) complexes containing a nascent imine functional group. Ethane or propane is also released under the conditions of catalytic ester hydrogenation, and time-course studies show that this release is concomitant with the onset of catalysis. A new PNN-pincer ruthenium(0)–imine complex is a highly active catalyst for ester hydrogenation at room temperature, giving up to 15 500 turnovers with no added base. This complex was shown to react reversibly at room temperature with two equivalents of hydrogen to give a ruthenium­(II)–dihydride complex, where the imine functionality has been hydrogenated to give a protic amine side group. These observations have potentially broad implications for the identities of catalytic intermediates in ester hydrogenation and related transformations

    Unexpected CNN-to-CC Ligand Rearrangement in Pincer–Ruthenium Precatalysts Leads to a Base-Free Catalyst for Ester Hydrogenation

    No full text
    We report the conversion of a series of CNN–pincer–ruthenium complexes Ru­(CNN)­HCl­(CO) to a CC-chelated form Ru­(CC)­(PR3)2H­(CO) on reaction with sodium tert-butoxide and monodentate phosphines. When the phosphine is triphenylphosphine, cis-phosphine complexes form at room temperature, which convert to the trans isomer at elevated temperatures. When the phosphine is tricyclohexylphosphine, only the trans-phosphine isomer is observed. The CC-chelated complexes are active catalysts for the hydrogenation of esters, without the need for added base. The ligand structure–activity relationship in the series of CC-chelated complexes mirrors that in the precursor CNN-Ru complexes, potentially indicating a common catalytic mechanism. Density functional theory calculations establish a plausible mechanism for the CNN-to-CC rearrangement and demonstrate that this rearrangement is potentially reversible under the conditions of ester hydrogenation catalysis
    corecore