693 research outputs found
A Study of Truck Platooning Incentives Using a Congestion Game
We introduce an atomic congestion game with two types of agents, cars and
trucks, to model the traffic flow on a road over various time intervals of the
day. Cars maximize their utility by finding a trade-off between the time they
choose to use the road, the average velocity of the flow at that time, and the
dynamic congestion tax that they pay for using the road. In addition to these
terms, the trucks have an incentive for using the road at the same time as
their peers because they have platooning capabilities, which allow them to save
fuel. The dynamics and equilibria of this game-theoretic model for the
interaction between car traffic and truck platooning incentives are
investigated. We use traffic data from Stockholm to validate parts of the
modeling assumptions and extract reasonable parameters for the simulations. We
use joint strategy fictitious play and average strategy fictitious play to
learn a pure strategy Nash equilibrium of this game. We perform a comprehensive
simulation study to understand the influence of various factors, such as the
drivers' value of time and the percentage of the trucks that are equipped with
platooning devices, on the properties of the Nash equilibrium.Comment: Updated Introduction; Improved Literature Revie
Randomized Consensus with Attractive and Repulsive Links
We study convergence properties of a randomized consensus algorithm over a
graph with both attractive and repulsive links. At each time instant, a node is
randomly selected to interact with a random neighbor. Depending on if the link
between the two nodes belongs to a given subgraph of attractive or repulsive
links, the node update follows a standard attractive weighted average or a
repulsive weighted average, respectively. The repulsive update has the opposite
sign of the standard consensus update. In this way, it counteracts the
consensus formation and can be seen as a model of link faults or malicious
attacks in a communication network, or the impact of trust and antagonism in a
social network. Various probabilistic convergence and divergence conditions are
established. A threshold condition for the strength of the repulsive action is
given for convergence in expectation: when the repulsive weight crosses this
threshold value, the algorithm transits from convergence to divergence. An
explicit value of the threshold is derived for classes of attractive and
repulsive graphs. The results show that a single repulsive link can sometimes
drastically change the behavior of the consensus algorithm. They also
explicitly show how the robustness of the consensus algorithm depends on the
size and other properties of the graphs
Complexity Reduction for Parameter-Dependent Linear Systems
We present a complexity reduction algorithm for a family of
parameter-dependent linear systems when the system parameters belong to a
compact semi-algebraic set. This algorithm potentially describes the underlying
dynamical system with fewer parameters or state variables. To do so, it
minimizes the distance (i.e., H-infinity-norm of the difference) between the
original system and its reduced version. We present a sub-optimal solution to
this problem using sum-of-squares optimization methods. We present the results
for both continuous-time and discrete-time systems. Lastly, we illustrate the
applicability of our proposed algorithm on numerical examples
Design of State-based Schedulers for a Network of Control Loops
For a closed-loop system, which has a contention-based multiple access
network on its sensor link, the Medium Access Controller (MAC) may discard some
packets when the traffic on the link is high. We use a local state-based
scheduler to select a few critical data packets to send to the MAC. In this
paper, we analyze the impact of such a scheduler on the closed-loop system in
the presence of traffic, and show that there is a dual effect with state-based
scheduling. In general, this makes the optimal scheduler and controller hard to
find. However, by removing past controls from the scheduling criterion, we find
that certainty equivalence holds. This condition is related to the classical
result of Bar-Shalom and Tse, and it leads to the design of a scheduler with a
certainty equivalent controller. This design, however, does not result in an
equivalent system to the original problem, in the sense of Witsenhausen.
Computing the estimate is difficult, but can be simplified by introducing a
symmetry constraint on the scheduler. Based on these findings, we propose a
dual predictor architecture for the closed-loop system, which ensures
separation between scheduler, observer and controller. We present an example of
this architecture, which illustrates a network-aware event-triggering
mechanism.Comment: 17 pages, technical repor
- …