287 research outputs found
Extraordinary exciton conductance induced by strong coupling
We demonstrate that exciton conductance in organic materials can be enhanced
by several orders of magnitude when the molecules are strongly coupled to an
electromagnetic mode. Using a 1D model system, we show how the formation of a
collective polaritonic mode allows excitons to bypass the disordered array of
molecules and jump directly from one end of the structure to the other. This
finding could have important implications in the fields of exciton transistors,
heat transport, photosynthesis, and biological systems in which exciton
transport plays a key role.Comment: Main text: 5 pages, 4 figures; Supplemental: 2 pages, 1 figure.
Version 2: Updated reference to related work arXiv:1409.2550. Version 3:
Updated to version accepted for publication in Physical Review Letter
Cavity-induced modifications of molecular structure in the strong coupling regime
In most theoretical descriptions of collective strong coupling of organic
molecules to a cavity mode, the molecules are modeled as simple two-level
systems. This picture fails to describe the rich structure provided by their
internal rovibrational (nuclear) degrees of freedom. We investigate a
first-principles model that fully takes into account both electronic and
nuclear degrees of freedom, allowing an exploration of the phenomenon of strong
coupling from an entirely new perspective. First, we demonstrate the
limitations of applicability of the Born-Oppenheimer approximation in strongly
coupled molecule-cavity structures. For the case of two molecules, we also show
how dark states, which within the two-level picture are effectively decoupled
from the cavity, are indeed affected by the formation of collective strong
coupling. Finally, we discuss ground-state modifications in the ultra-strong
coupling regime and show that some molecular observables are affected by the
collective coupling strength, while others only depend on the single-molecule
coupling constant.Comment: 12 pages, 8 figure
Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode
We develop a quantum mechanical formalism to treat the strong coupling
between an electromagnetic mode and a vibrational excitation of an ensemble of
organic molecules. By employing a Bloch-Redfield-Wangsness approach, we show
that the influence of dephasing-type interactions, i.e., elastic collisions
with a background bath of phonons, critically depends on the nature of the bath
modes. In particular, for long-range phonons corresponding to a common bath,
the dynamics of the "bright state" (the collective superposition of molecular
vibrations coupling to the cavity mode) is effectively decoupled from other
system eigenstates. For the case of independent baths (or short-range phonons),
incoherent energy transfer occurs between the bright state and the uncoupled
dark states. However, these processes are suppressed when the Rabi splitting is
larger than the frequency range of the bath modes, as achieved in a recent
experiment [Shalabney et al., Nat. Commun. 6, 5981 (2015)]. In both cases, the
dynamics can thus be described through a single collective oscillator coupled
to a photonic mode, making this system an ideal candidate to explore cavity
optomechanics at room temperature.Comment: 13 pages, 4 figure
Entanglement detection in coupled particle plasmons
When in close contact, plasmonic resonances interact and become strongly
correlated. In this work we develop a quantum mechanical model, using the
language of continuous variables and quantum information, for an array of
coupled particle plasmons. This model predicts that when the coupling strength
between plasmons approaches or surpasses the local dissipation, a sizable
amount of entanglement is stored in the collective modes of the array. We also
prove that entanglement manifests itself in far-field images of the plasmonic
modes, through the statistics of the quadratures of the field, in what
constitutes a novel family of entanglement witnesses. This protocol is so
robust that it is indeed independent of whether our own model is correct.
Finally, we estimate the amount of entanglement, the coupling strength and the
correlation properties for a system that consists of two or more coupled
nanospheres of silver, showing evidence that our predictions could be tested
using present-day state-of-the-art technology.Comment: 8 pages (6 main text + 2 supplemental), 3 figure
Many-molecule reaction triggered by a single photon in polaritonic chemistry
The second law of photochemistry states that, in most cases, no more than one molecule is activated for an excited-state reaction for each photon absorbed by a collection of molecules. In this Letter, we demonstrate that it is possible to trigger a many-molecule reaction using only one photon by strongly coupling the molecular ensemble to a confined light mode. The collective nature of the resulting hybrid states of the system (the so-called polaritons) leads to the formation of a polaritonic "supermolecule" involving the degrees of freedom of all molecules, opening a reaction path on which all involved molecules undergo a chemical transformation. We theoretically investigate the system conditions for this effect to take place and be enhanced.This work has been funded by the European Research Council
under Grants No. ERC-2011-AdG-290981 and No. ERC-
2016-STG-714870, by the European Union Seventh
Framework Programme under Grant No. FP7-PEOPLE-
2013-CIG-618229, and the Spanish MINECO under
Contract No. MAT2014-53432-C5-5-R and the “María
de Maeztu” program for Units of Excellence in R&D
(MDM-2014-0377)
Nanoplasmonic near-field synthesis
The temporal response of resonances in nanoplasmonic structures typically
converts an incoming few-cycle field into a much longer near-field at the spot
where non-linear physical phenomena including electron emission, recollision
and high-harmonic generation can take place. We show that for practically
useful structures pulse shaping of the incoming pulse can be used to synthesize
the plasmon-enhanced field and enable single-cycle driven nonlinear physical
phenomena. Our method is demonstrated for the generation of an isolated
attosecond pulse by plasmon-enhanced high harmonic generation. We furthermore
show that optimal control techniques can be used even if the response of the
plasmonic structure is not known a priori.Comment: 6 page
Photoionization of helium by attosecond pulses: extraction of spectra from correlated wave functions
We investigate the photoionization spectrum of helium by attosecond XUV
pulses both in the spectral region of doubly excited resonances as well as
above the double ionization threshold. In order to probe for convergence, we
compare three techniques to extract photoelectron spectra from the wavepacket
resulting from the integration of the time-dependent Schroedinger equation in
a finite-element discrete variable representation basis. These techniques are:
projection on products of hydrogenic bound and continuum states, projection
onto multi-channel scattering states computed in a B-spline close-coupling
basis, and a technique based on exterior complex scaling (ECS) implemented in
the same basis used for the time propagation. These methods allow to monitor
the population of continuum states in wavepackets created with ultrashort
pulses in different regimes. Applications include photo cross sections and
anisotropy parameters in the spectral region of doubly excited resonances,
time-resolved photoexcitation of autoionizing resonances in an attosecond
pump-probe setting, and the energy and angular distribution of correlated
wavepackets for two-photon double ionization.Comment: 19 pages, 12 figure
- …
