35 research outputs found
Long-Time Asymptotics for the Toda Shock Problem: Non-Overlapping Spectra
We derive the long-time asymptotics for the Toda shock problem using the
nonlinear steepest descent analysis for oscillatory Riemann--Hilbert
factorization problems. We show that the half plane of space/time variables
splits into five main regions: The two regions far outside where the solution
is close to free backgrounds. The middle region, where the solution can be
asymptotically described by a two band solution, and two regions separating
them, where the solution is asymptotically given by a slowly modulated two band
solution. In particular, the form of this solution in the separating regions
verifies a conjecture from Venakides, Deift, and Oba from 1991.Comment: 39 page
Scattering Theory for Jacobi Operators with Quasi-Periodic Background
We develop direct and inverse scattering theory for Jacobi operators which
are short range perturbations of quasi-periodic finite-gap operators. We show
existence of transformation operators, investigate their properties, derive the
corresponding Gel'fand-Levitan-Marchenko equation, and find minimal scattering
data which determine the perturbed operator uniquely.Comment: 29 page
Scattering Theory for Jacobi Operators with General Steplike Quasi-Periodic Background
We develop direct and inverse scattering theory for Jacobi operators with
steplike coefficients which are asymptotically close to different finite-gap
quasi-periodic coefficients on different sides. We give a complete
characterization of the scattering data, which allow unique solvability of the
inverse scattering problem in the class of perturbations with finite first
moment.Comment: 23 page
Algebro-Geometric Finite-Gap Solutions of the Ablowitz-Ladik Hierarchy
We provide a detailed derivation of all complex-valued algebro-geometric
finite-band solutions of the Ablowitz-Ladik hierarchy. In addition, we survey a
recursive construction of the Ablowitz-Ladik hierarchy and its zero-curvature
and Lax formalism.Comment: 41 page
Trace formulas and inverse spectral theory for finite Jacobi operators
Diese Arbeit untersucht folgende Problemstellung: welche Spektraldaten eines endlichen Jacobioperators reichen aus, um den Operator eindeutig zu rekonstruieren.
Wir beweisen, dass N Eigenwerte einer N × N Jacobi Matrix J zusammen
mit N − 1 Eigenwerten von zwei Teilmatrizen die Jacobi Matrix eindeutig bestimmen. Die Teilmatrizen erhalten wir durch Streichen der n-ten Zeile und
Spalte von J. Hinreichende und notwendige Bedingungen an die Eigenwerte
werden gegeben, aus denen die Existenz einer zugehoerigen Jacobi Matrix folgt. In der Physik beschreibt dieses Modell eine Kette von N Massenpunkten mit fixierten Enden, die durch Federn miteinander verbunden sind. Aus den Eigenfrequenzen dieses Systems und des Systems, in dem ein
weiterer innerer Punkt festgehalten wird, koennen die Massen und die Federkonstanten des urspruenglichen Systems eindeutig rekonstruiert werden.The goal of this thesis is to determine spectral data of finite Jacobi operators
which are necessary and sufficient to reconstruct the operator uniquely.
We prove that N eigenvalues of a N × N Jacobi matrix J together with
N −1 eigenvalues of two submatrices of J which we obtain by omitting the
n-th line and column uniquely determine J. Necessary and sufficient restrictions on the sets of eigenvalues are given under which one obtains existence of J. From a physical point of view such a model describes a chain of N particles coupled via springs and fixed at both end points. Determining
the eigenfrequencies of this system and the one obtained by keeping one particle fixed, one can uniquely reconstruct the masses and spring constants
Scattering theory for Jacobi operators and applications to completely integrable systems
In der vorliegenden Arbeit wird die direkte und inverse Streutheorie fuer Jacobioperatoren entwickelt, die kurzreichweitige Perturbationen von quasi-periodischen finite-gap Operatoren sind. Wir zeigen Existenz des Transformationsoperators, untersuchen dessen Eigenschaften, leiten die Gel'fand-Levitan-Marchenko Gleichung her und geben minimale
Streudaten an, die den gestoerten Operator eindeutig beschreiben.
Weiters wird das zugehoerige Anfangswertproblem der Todahierachie mittels
der inversen Streutransformation geloest.In this thesis we develop direct and inverse scattering theory for Jacobi operators which are short range perturbations of quasi-periodic finite-gap operators. We show existence of transformation operators, investigate their properties, derive the corresponding Gel'fand-Levitan-Marchenko equation, and find minimal scattering data which determine the perturbed operator uniquely. Then we apply this knowledge to solve the associated initial value problem of the Toda hierarchy via the inverse scattering transform
Inverse scattering transform for the Toda hierarchy with steplike finite-gap backgrounds
We provide a rigorous treatment of the inverse scattering transform for the
entire Toda hierarchy for solutions which are asymptotically close to (in
general) different finite-gap solutions as .Comment: 10 page