5 research outputs found

    A New Strategy for Smoking Cessation: Characterization of a Bacterial Enzyme for the Degradation of Nicotine

    No full text
    Smoking is the leading cause of preventable diseases; thus, effective smoking cessation aids are crucial for reducing the prevalence of cigarette smoking and smoking-related illnesses. In our current campaign we offer a nicotine-degrading enzyme from <i>Pseudomonas putida</i>, NicA2, a flavin-containing protein. To explore its potential, a kinetic evaluation of the enzyme was conducted, which included determination of <i>K</i><sub>m</sub>, <i>k</i><sub>cat</sub>, buffer/serum half-life, and thermostability. Additionally, the catabolism profile of NicA2 was elucidated to assess the potential toxicity of the nicotine-derived products. In characterizing the enzyme, a favorable biochemical profile of the enzyme was discovered, making NicA2 a prospective therapeutic candidate. This approach provides a new avenue for the field of nicotine addiction therapy

    Methamphetamine Vaccines: Improvement through Hapten Design

    No full text
    Methamphetamine (MA) addiction is a serious public health problem, and current methods to abate addiction and relapse are currently ineffective for mitigating this growing global epidemic. Development of a vaccine targeting MA would provide a complementary strategy to existing behavioral therapies, but this has proven challenging. Herein, we describe optimization of both hapten design and formulation, identifying a vaccine that elicited a robust anti-MA immune response in mice, decreasing methamphetamine-induced locomotor activity

    Injection Route and TLR9 Agonist Addition Significantly Impact Heroin Vaccine Efficacy

    No full text
    Active immunization is an effective means of blocking the pharmacodynamic effects of drugs and holds promise as a treatment for heroin addiction. Previously, we demonstrated the efficacy of our first-generation vaccine in blocking heroin self-administration in rats, however, many vaccine components can be modified to further improve performance. Herein we examine the effects of varying heroin vaccine injection route and adjuvant formulation. Mice immunized via subcutaneous (sc) injection exhibited inferior anti-heroin titers compared to intraperitoneal (ip) and sc/ip coadministration injection routes. Addition of TLR9 agonist cytosine-guanine oligodeoxynucleotide 1826 (CpG ODN 1826) to the original alum adjuvant elicited superior antibody titers and opioid affinities compared to alum alone. To thoroughly assess vaccine efficacy, full dose–response curves were generated for heroin-induced analgesia in both hot plate and tail immersion tests. Mice treated with CpG ODN 1826 exhibited greatly shifted dose–response curves (10–13-fold vs unvaccinated controls) while non-CpG ODN vaccine groups did not exhibit the same robust effect (2–7-fold shift for ip and combo, 2–3-fold shift for sc). Our results suggest that CpG ODN 1826 is a highly potent adjuvant, and injection routes should be considered for development of small molecule–protein conjugate vaccines. Lastly, this study has established a new standard for assessing drugs of abuse vaccines, wherein a full dose–response curve should be performed in an appropriate behavioral task

    Investigations of Enantiopure Nicotine Haptens Using an Adjuvanting Carrier in Anti-Nicotine Vaccine Development

    No full text
    Despite efforts to produce suitable smoking cessation aids, addiction to nicotine continues to carry a substantive risk of recidivism. An attractive alternative to current therapies is the pharmacokinetic strategy of antinicotine vaccination. A major hurdle in the development of the strategy has been to elicit a sufficiently high antibody concentration to curb nicotine distribution to the brain. Herein, we detail investigations into a new hapten design, which was able to elicit an antibody response of significantly higher specificity for nicotine. We also explore the use of a mutant flagellin carrier protein with adjuvanting properties. These studies underlie the feasibility of improvement in antinicotine vaccine formulations to move toward clinical efficacy

    Development of a Clinically Viable Heroin Vaccine

    No full text
    Heroin is a highly abused opioid and incurs a significant detriment to society worldwide. In an effort to expand the limited pharmacotherapy options for opioid use disorders, a heroin conjugate vaccine was developed through comprehensive evaluation of hapten structure, carrier protein, adjuvant and dosing. Immunization of mice with an optimized heroin-tetanus toxoid (TT) conjugate formulated with adjuvants alum and CpG oligodeoxynucleotide (ODN) generated heroin “immunoantagonism”, reducing heroin potency by >15-fold. Moreover, the vaccine effects proved to be durable, persisting for over eight months. The lead vaccine was effective in rhesus monkeys, generating significant and sustained antidrug IgG titers in each subject. Characterization of both mouse and monkey antiheroin antibodies by surface plasmon resonance (SPR) revealed low nanomolar antiserum affinity for the key heroin metabolite, 6-acetylmorphine (6AM), with minimal cross reactivity to clinically used opioids. Following a series of heroin challenges over six months in vaccinated monkeys, drug-sequestering antibodies caused marked attenuation of heroin potency (>4-fold) in a schedule-controlled responding (SCR) behavioral assay. Overall, these preclinical results provide an empirical foundation supporting the further evaluation and potential clinical utility of an effective heroin vaccine in treating opioid use disorders
    corecore