58 research outputs found

    Multiplication of solutions for linear overdetermined systems of partial differential equations

    Full text link
    A large family of linear, usually overdetermined, systems of partial differential equations that admit a multiplication of solutions, i.e, a bi-linear and commutative mapping on the solution space, is studied. This family of PDE's contains the Cauchy-Riemann equations and the cofactor pair systems, included as special cases. The multiplication provides a method for generating, in a pure algebraic way, large classes of non-trivial solutions that can be constructed by forming convergent power series of trivial solutions.Comment: 27 page

    Isospectrality of spherical MHD dynamo operators: pseudo-Hermiticity and a no-go theorem

    Full text link
    The isospectrality problem is studied for the operator of the spherical hydromagnetic alpha^2-dynamo. It is shown that this operator is formally pseudo-Hermitian (J-symmetric) and lives in a Krein space. Based on the J-symmetry, an operator intertwining Ansatz with first-order differential intertwining operators is tested for its compatibility with the structure of the alpha^2-dynamo operator matrix. An intrinsic structural inconsistency is obtained in the set of associated matrix Riccati equations. This inconsistency is interpreted as a no-go theorem which forbids the construction of isospectral alpha^2-dynamo operator classes with the help of first-order differential intertwining operators.Comment: 13 pages, LaTeX2e, improved references, to appear in J. Math. Phy

    Uniqueness of the potential function for the vectorial Sturm-Liouville equation on a finite interval

    Get PDF
    [[abstract]]In this paper, the vectorial Sturm-Liouville operator L Q =−d 2 dx 2 +Q(x) is considered, where Q(x) is an integrable m×m matrix-valued function defined on the interval [0,π] . The authors prove that m 2 +1 characteristic functions can determine the potential function of a vectorial Sturm-Liouville operator uniquely. In particular, if Q(x) is real symmetric, then m(m+1) 2 +1 characteristic functions can determine the potential function uniquely. Moreover, if only the spectral data of self-adjoint problems are considered, then m 2 +1 spectral data can determine Q(x) uniquely.[[notice]]補正完畢[[incitationindex]]SCI[[cooperationtype]]國外[[booktype]]電子

    An inequality for the indefinite integral of a function in LqL^{q}

    No full text

    Restrictions and extensions of Fourier multipliers

    No full text

    Storage organization in programming systems

    No full text

    On addressing multidimensional arrays

    No full text

    Inequalities for Fourier transforms

    No full text
    corecore