24 research outputs found
Establishing propositional truth-value in counterfactual and real-world contexts during sentence comprehension: Differential sensitivity of the left and right inferior frontal gyri
What makes a proposition true or false has traditionally played an essential role in philosophical and linguistic theories of meaning. A comprehensive neurobiological theory of language must ultimately be able to explain the combined contributions of real-world truth-value and discourse context to sentence meaning. This fMRI study investigated the neural circuits that are sensitive to the propositional truth-value of sentences about counterfactual worlds, aiming to reveal differential hemispheric sensitivity of the inferior prefrontal gyri to counterfactual truth-value and real-world truth-value. Participants read true or false counterfactual conditional sentences (“If N.A.S.A. had not developed its Apollo Project, the first country to land on the moon would be Russia/America”) and real-world sentences (“Because N.A.S.A. developed its Apollo Project, the first country to land on the moon has been America/Russia”) that were matched on contextual constraint and truth-value. ROI analyses showed that whereas the left BA 47 showed similar activity increases to counterfactual false sentences and to real-world false sentences (compared to true sentences), the right BA 47 showed a larger increase for counterfactual false sentences. Moreover, whole-brain analyses revealed a distributed neural circuit for dealing with propositional truth-value. These results constitute the first evidence for hemispheric differences in processing counterfactual truth-value and real-world truth-value, and point toward additional right hemisphere involvement in counterfactual comprehension
Additional file 1 of Ranking metrics in gene set enrichment analysis: do they matter?
Table with detailed results of surrogate sensitivity, false positive rate and evaluation time for every tested ranking metric on every data set. (XLS 59 kb
Additional file 2 of Ranking metrics in gene set enrichment analysis: do they matter?
Table with data sets description about gene expression distribution normality and variance homogeneity. (XLS 38 kb
Aurum dataset—distributions of absolute relative errors in estimating positions of peaks, represented by histograms, for MS-GMM (red) and CWT (blue) algorithms.
<p>Aurum dataset—distributions of absolute relative errors in estimating positions of peaks, represented by histograms, for MS-GMM (red) and CWT (blue) algorithms.</p
DataSheet_1_Sex- and age-specific aspects of human peripheral T-cell dynamics.docx
BackgroundThe diversity of the antigenic T cell receptor (TCR) repertoire clonally expressed on T lymphocytes is a key element of the adaptive immune system protective functions. A decline in diversity in the older adults is associated with health deterioration. This diversity is generated by the rearrangement of TRB genes coding for TCR chains during lymphocyte differentiation in the thymus, but is essentially maintained by peripheral T lymphocytes proliferation for most of life. Deep sequencing of rearranged TRB genes from blood cells allows the monitoring of peripheral T cell repertoire dynamics. We analysed two aspects of rearranged TRB diversity, related to T lymphocyte proliferation and to the distribution of the T cell clone size, in a collection of repertoires obtained from 1 to 74 years-old donors.ResultsOur results show that peripheral T lymphocytes expansion differs according to the recombination status of their TRB loci. Their proliferation rate changes with age, with different patterns in men and women. T cell clone size becomes more heterogeneous with time, and, in adults, is always more even in women. Importantly, a longitudinal analysis of TRB repertoires obtained at ten years intervals from individual men and women confirms the findings of this cross-sectional study.ConclusionsPeripheral T lymphocyte proliferation partially depends on their thymic developmental history. The rate of proliferation of T cells differing in their TRB rearrangement status is different in men and women before the age of 18 years old, but similar thereafter.</p
Fragment of one virtual MS dataset (with 200 peaks, m/z range 2900–3300 Da).
<p>Comparison of MS-GMM and CWT. MS signal (black), GMM model components (red), peaks detected by CWT algorithm (blue asterisks). Positions of true peaks in the spectral signal are marked by circles symbols and detection status is depicted by colors: peak detected only by MS-GMM method (red), peak detected only by CWT method (blue), peak detected by both MS-GMM and CWT (black), peak not detected by any of algorithms (empty circle).</p
Short fragment of MS including one ground truth Aurum peak m/z = 1690.766 Da from the spectrum T10761_Well A24_18836 and its GMM.
<p><b>(A)</b> MS fragment, <b>(B)</b> GMM decomposition, <b>(C)</b> GMM components. We additionally mark, by vertical lines m/z positions, black: true Aurum peak 1690.766, red: m/z estimate by using MS-GMM, blue: m/z estimate by using CWT algorithm.</p
Performance indexes for the three peak detection algorithms applied for mean spectra in the simulated datasets.
<p><b>(A)</b> F1 score. <b>(B)</b> Sensitivity. <b>(C)</b> FDR. <b>(D)</b> No of detected peaks. Colors: MS-GMM—red, CWT—blue, CROM—green.</p
MOESM1 of Identification of serum proteome signatures of locally advanced and metastatic gastric cancer: a pilot study
Additional file 1. Detailed description of differentiating components of serum proteome
Allele frequency in patients with Graves' disease (GD)and control group.
*<p>with Bonferroni correction.</p