11 research outputs found
First experiences with the ATLAS Pixel Detector Control System at the Combined Test Beam 2004
Detector control systems (DCS) include the read out, control and supervision
of hardware devices as well as the monitoring of external systems like cooling
system and the processing of control data. The implementation of such a system
in the final experiment has also to provide the communication with the trigger
and data acquisition system (TDAQ). In addition, conditions data which describe
the status of the pixel detector modules and their environment must be logged
and stored in a common LHC wide database system. At the combined test beam all
ATLAS subdetectors were operated together for the first time over a longer
period. To ensure the functionality of the pixel detector a control system was
set up. We describe the architecture chosen for the pixel detector control
system, the interfaces to hardware devices, the interfaces to the users and the
performance of our system. The embedding of the DCS in the common
infrastructure of the combined test beam and also its communication with
surrounding systems will be discussed in some detail.Comment: 6 pages, 9 figures, Pixel 2005 proceedings preprin
Optical Readout in a Multi-Module System Test for the ATLAS Pixel Detector
The innermost part of the ATLAS experiment at the LHC, CERN, will be a pixel
detector. The command messages and the readout data of the detector are
transmitted over an optical data path. The readout chain consists of many
components which are produced at several locations around the world, and must
work together in the pixel detector. To verify that these parts are working
together as expected a system test has been built up. In this paper the system
test setup and the operation of the readout chain is described. Also, some
results of tests using the final pixel detector readout chain are given.Comment: 6 pages, 10 figures, Pixel 2005 proceedings preprin
Validation Studies of the ATLAS Pixel Detector Control System
The ATLAS pixel detector consists of 1744 identical silicon pixel modules
arranged in three barrel layers providing coverage for the central region, and
three disk layers on either side of the primary interaction point providing
coverage of the forward regions. Once deployed into the experiment, the
detector will employ optical data transfer, with the requisite powering being
provided by a complex system of commercial and custom-made power supplies.
However, during normal performance and production tests in the laboratory, only
single modules are operated and electrical readout is used. In addition,
standard laboratory power supplies are used. In contrast to these normal tests,
the data discussed here was obtained from a multi-module assembly which was
powered and read out using production items: the optical data path, the final
design power supply system using close to final services, and the Detector
Control System (DCS). To demonstrate the functionality of the pixel detector
system a stepwise transition was made from the normal laboratory readout and
power supply systems to the ones foreseen for the experiment, with validation
of the data obtained at each transition.Comment: 8 pages, 8 figures, proceedings for the Pixel2005 worksho
Towards the final ATLAS Pixel Detector Control System
The innermost part of the ATLAS experiment is a pixel detector, built by 1744 individual detector modules. To operate the modules, readout electronics, and other detector components, a complex power supply and detector control system (DCS) is necessary. This includes a large number of crates, which house the different hardware components as well as a PC net where the different control projects are running. To test the final detector after its assembly before it is installed in the ATLAS cavern, a large test system has been set up at CERN, which allows to operate ca. 10 % of the detector in parallel. Since autumn 2006 this system is in permanent operation. As nearly everywhere the final control hardware is used, its reliability could be investigated and the performance of the control software could be studied. After an overview on our DCS hardware, we report on the experience with the control software
Center and Periphery. Theological Perspectives on Church and Society
Krisenzeit â Zeit der Kirche â Zeit der Theologie?
Die Problemlagen der Gegenwart stellen die wissenschaftliche Theologie vor so groĂe Herausforderungen wie selten zuvor. Nicht allein stehen in den kommenden Jahren strukturelle Weichenstellungen an, welche die Kirche kaum unberĂŒhrt lassen werden. Schon jetzt verlangt die prekĂ€re Situation vieler Menschen und ganzer Völker nach einer tragfĂ€higen Reflexion und VerkĂŒndigung des Glaubens. Christliche Theologie darf die notwendigen Antworten hier nicht schuldig bleiben. In der vorliegenden Festschrift haben sich Kollegen, Freunde und SchĂŒler von Otmar Meuffels den vielfĂ€ltigen Fragestellungen zugewandt, welche die Arbeit an der zeitgenössischen Heilsbedeutung des christlichen Glaubens aufwirft. Sie schreiben damit seinen prĂ€genden Ansatz fort, der stets die aktuelle Relevanz der Rede von Gott im Blick hat. In diesem Sinn zeigen die in diesem Band versammelten BeitrĂ€ge auf ganz unterschiedlichen Feldern die AnschlussfĂ€higkeit der Theologie in den heute virulenten gesellschaftlichen Debatten.Time of Crisis â Times of Church â Time of Theology?
Academic theology has rarely faced bigger challenges than those of the present. The coming years will see structural course changes which will leave the church hardly untouched. Even today, the precarious situation of people and peopleâs demands for viable reflection and proclamation of Faith. Christian theology must not fail to give necessary answers in this regard. In this publication, colleagues, friends, and students of Otmar Meuffels faced these diverse questions, which are posed by working with the contemporary soteriological significance of Christian faith. With this, they continue his defining approach which always focuses on the current relevance of the speech of God. Therefore, all contributions collected in this publication show the ability to connect theology with current and relevant societal controversies in completely different fields
Qualifizierungsmessungen des Spannungsversorgungssystems sowie Konzeptionierung einer Zustandsmaschine fĂŒr die Detektorkontrolle des ATLAS-Pixeldetektors
In den kommenden 10 Jahren wird am europĂ€ischen Kernforschungszentrum CERN in Genf der LHC zusammen mit seinen Experimenten - darunter ATLAS als das gröĂte - in Betrieb sein und Daten liefern. Als Teil des ATLAS Spurdetektors wird ein Silizium Pixeldetektor mit ĂŒber 80 Mio. KanĂ€le eingesetzt, der sich direkt am Wechselwirkungspunkt befindet. Um den zuverlĂ€ssigen Betrieb ĂŒber den gesamten Zeitraum zu gewĂ€hrleisten stellen das Versorgungssystem und das Kontrollsystem des ATLAS-Pixeldetektors in diesem Zusammenhang wichtige Bausteine dar. Entsprechende Untersuchungen des Versorgungssystems, die innerhalb eines umfangreichen Testsystems, dem so genannten Systemtest, mit nahezu allen endgĂŒltigen Komponenten durchgefĂŒhrt wurden, und die Auswirkungen auf den Pixeldetektor sind Gegenstand dieser Arbeit. Ein weiterer Punkt dieser Arbeit ist die Weiterentwicklung der Detektorkontrollsystems-Software unter BerĂŒcksichtigung der verschiedenen Teilsysteme. Ein Schwerpunkt stellt dabei die Konzeptionierung der erforderlichen Zustandsmaschine, als Schnittstelle fĂŒr die Benutzer und die Anbindung an das Datennamesystem dar, wobei die Erfahrungen aus dem Betrieb des Systemtests in das Konzept der Bestimmung der ZustĂ€nde mit eingeflossen sind