4 research outputs found

    Fig 2 -

    No full text
    Species composition characteristics (A), the indices of species diversity (B) and non-metric multidimensional scaling analysis (C) of Quercus wutaishanica shrub at various restoration stages in Liupanshan Mountains.</p

    Data_Sheet_2_Root exudates and rhizosphere soil bacterial relationships of Nitraria tangutorum are linked to k-strategists bacterial community under salt stress.docx

    No full text
    When plants are subjected to various biotic and abiotic stresses, the root system responds actively by secreting different types and amounts of bioactive compounds, while affects the structure of rhizosphere soil bacterial community. Therefore, understanding plant–soil-microbial interactions, especially the strength of microbial interactions, mediated by root exudates is essential. A short-term experiment was conducted under drought and salt stress to investigate the interaction between root exudates and Nitraria tangutorum rhizosphere bacterial communities. We found that drought and salt stress increased rhizosphere soil pH (9.32 and 20.6%) and electrical conductivity (1.38 and 11 times), respectively, while decreased organic matter (27.48 and 31.38%), total carbon (34.55 and 29.95%), and total phosphorus (20 and 28.57%) content of N. tangutorum rhizosphere soil. Organic acids, growth hormones, and sugars were the main differential metabolites of N. tangutorum under drought and salt stress. Salt stress further changed the N. tangutorum rhizosphere soil bacterial community structure, markedly decreasing the relative abundance of Bacteroidota as r-strategist while increasing that of Alphaproteobacteria as k-strategists. The co-occurrence network analysis showed that drought and salt stress reduced the connectivity and complexity of the rhizosphere bacterial network. Soil physicochemical properties and root exudates in combination with salt stress affect bacterial strategies and interactions. Our study revealed the mechanism of plant–soil-microbial interactions under the influence of root exudates and provided new insights into the responses of bacterial communities to stressful environments.</p

    DataSheet_1_Temperature explains intraspecific functional trait variation in Phragmites australis more effectively than soil properties.docx

    No full text
    Common reed (Phragmites australis) is a widespread grass species that exhibits a high degree of intraspecific variation for functional traits along environmental gradients. However, the mechanisms underlying intraspecific variation and adaptation strategies in response to environmental gradients on a regional scale remain poorly understood. In this study, we measured leaf, stem, and root traits of common reed in the lakeshore wetlands of the arid and semi-arid regions of the Inner Mongolia Plateau aiming to reveal the regional-scale variation for functional traits in this species, and the corresponding potentially influencing factors. Additionally, we aimed to reveal the ecological adaptation strategies of common reed in different regions using the plant economics spectrum (PES) theory. The results showed that functional-trait variation followed significant latitudinal and longitudinal patterns. Furthermore, we found that these variations are primarily driven by temperature-mediated climatic differences, such as aridity, induced by geographical distance. In contrast, soil properties and the combined effects of climate and soil had relatively minor effects on such properties. In the case of common reed, the PES theory applies to the functional traits at the organ, as well as at the whole-plant level, and different ecological adaptation strategies across arid and semi-arid regions were confirmed. The extent of utilization and assimilation of resources by this species in arid regions was a conservative one, whereas in semi-arid regions, an acquisition strategy prevailed. This study provides new insights into intraspecific variations for functional traits in common reed on a regional scale, the driving factors involved, and the ecological adaptation strategies used by the species. Moreover, it provided a theoretical foundation for wetland biodiversity conservation and ecological restoration.</p
    corecore