4 research outputs found

    Ozone Chemistry on Greasy Glass Surfaces Affects the Levels of Volatile Organic Compounds in Indoor Environments

    No full text
    The chemistry of ozone (O3) on indoor surfaces leads to secondary pollution, aggravating the air quality in indoor environments. Here, we assess the heterogeneous chemistry of gaseous O3 with glass plates after being 1 month in two different kitchens where Chinese and Western styles of cooking were applied, respectively. The uptake coefficients of O3 on the authentic glass plates were measured in the dark and under UV light irradiation typical for indoor environments (320 nm < λ < 400 nm) at different relative humidities. The gas-phase product compounds formed upon reactions of O3 with the glass plates were evaluated in real time by a proton-transfer-reaction quadrupole-interface time-of-flight mass spectrometer. We observed typical aldehydes formed by the O3 reactions with the unsaturated fatty acid constituents of cooking oils. The formation of decanal, 6-methyl-5-hepten-2-one (6-MHO), and 4-oxopentanal (4-OPA) was also observed. The employed dynamic mass balance model shows that the estimated mixing ratios of hexanal, octanal, nonanal, decanal, undecanal, 6-MHO, and 4-OPA due to O3 chemistry with authentic grime-coated kitchen glass surfaces are higher in the kitchen where Chinese food was cooked compared to that where Western food was cooked. These results show that O3 chemistry on greasy glass surfaces leads to enhanced VOC levels in indoor environments

    Interfacial Ozone Oxidation Chemistry at a Riverine Surface Microlayer as a Source of Nitrogen Organic Compounds

    No full text
    Nitrogen (N)-containing organic compounds, including “brown carbon” (BrC), represent an important fraction of organic aerosols. However, little is known about the processes of formation of the secondarily formed N-containing organics in the atmosphere. Here, we investigated the formation of gas-phase organic compounds, including N-containing organics, through interfacial oxidation chemistry of gaseous O3 with an authentic riverine surface microlayer (SML) by using a high-resolution quadrupole Orbitrap mass spectrometer coupled to a commercial secondary electrospray ionization source. The resulting hierarchical cluster diagram obtained for real-time observation for 60 min shows the occurrence of 677 ions in positive mode. The level of N-containing organics, including BrC compounds (e.g., imidazoles), formed during the heterogeneous processing of O3 on the SML in the dark and under ultraviolet–visible light irradiation, was on average 20.7% among all samples. Many of the detected N-containing compounds comprise a CN bond, suggesting that they are potentially toxic compounds that also affect urban air quality. Overall, this study provides evidence that interfacial ozone oxidation chemistry at the riverine SML plays an important role as an additional source of air pollution in urban environments, which can affect both human health and the absorption properties of urban aerosols

    Unveiling the pH-Dependent Yields of H<sub>2</sub>O<sub>2</sub> and OH by Aqueous-Phase Ozonolysis of <i>m</i>‑Cresol in the Atmosphere

    No full text
    Hydrogen peroxide (H2O2) and hydroxyl radical (OH) are important oxidants in the atmospheric aqueous phase such as cloud droplets and deliquescent aerosol particles, playing a significant role in the chemical transformation of organic and inorganic pollutants in the atmosphere. Atmospheric aqueous-phase chemistry has been considered to be a source of H2O2 and OH. However, our understanding of the mechanisms of their formation in atmospheric waters is still incomplete. Here, we show that the aqueous-phase reaction of dissolved ozone (O3) with substituted phenols such as m-cresol represents an important source of H2O2 and OH exhibiting pH-dependent yields. Intriguingly, the formation of H2O2 through the ring-opening mechanism is strongly promoted under lower pH conditions (pH 2.5–3.5), while higher pH favors the ring-retaining pathways yielding OH. The rate constant of the reaction of O3 with m-cresol increases with increasing pH. The reaction products formed during the ozonolysis of m-cresol are analyzed by an Orbitrap mass spectrometer, and reaction pathways are suggested based on the identified product compounds. This study indicates that aqueous-phase ozonolysis of phenolic compounds might be an alternative source of H2O2 and OH in the cloud, rain, and liquid water of aerosol particles; thus, it should be considered in future model studies

    The Effect of Human Occupancy on Indoor Air Quality through Real-Time Measurements of Key Pollutants

    No full text
    The primarily emitted compounds by human presence, e.g., skin and volatile organic compounds (VOCs) in breath, can react with typical indoor air oxidants, ozone (O3), and hydroxyl radicals (OH), leading to secondary organic compounds. Nevertheless, our understanding about the formation processes of the compounds through reactions of indoor air oxidants with primary emitted pollutants is still incomplete. In this study we performed real-time measurements of nitrous acid (HONO), nitrogen oxides (NOx = NO + NO2), O3, and VOCs to investigate the contribution of human presence and human activity, e.g., mopping the floor, to secondary organic compounds. During human occupancy a significant increase was observed of 1-butene, isoprene, and d-limonene exhaled by the four adults in the room and an increase of methyl vinyl ketone/methacrolein, methylglyoxal, and 3-methylfuran, formed as secondary compounds through reactions of OH radicals with isoprene. Intriguingly, the level of some compounds (e.g., m/z 126, 6-methyl-5-hepten-2-one, m/z 152, dihydrocarvone, and m/z 194, geranyl acetone) formed through reactions of O3 with the primary compounds was higher in the presence of four adults than during the period of mopping the floor with commercial detergent. These results indicate that human presence can additionally degrade the indoor air quality
    corecore