20 research outputs found

    Topological Holography and Storage with Optical Knots and Links

    No full text
    After more than 70 years of development, holography has become an essential tool of modern optics in many applications. In fact, for various applications of different kinds of holographic techniques, stability and antijamming ability are very important. Here, optical topological structures are introduced into holographic technology, and an entirely new concept of optical topological holography is demonstrated to solve stability and antijamming problems. Based on the optical knots and links, the topological holography is not only developed in theory, but also demonstrated experimentally. In addition, a new topological holographic coding is established by regarding each knotted/linked topological structure as an information carrier. Due to the variety of knotted and linked structures and their characteristics of topological protection, such coding can have high capacity as well as robust properties. Furthermore, with writing the hologram into the liquid crystal, robust information storage of 3D topological holography is realized

    High-dimensional entanglement-enabled holography for quantum encryption

    No full text
    As an important imaging technique, holography has been realized with different physical dimensions of light,including polarization, wavelength, and time. Recently, quantum holography has been realized by utilizing polarization entangled state with the advantages of high robustness and enhanced spatial resolution, comparing with classical one. However, the polarization is only a two-dimensional degree of freedom, which greatly limits the capacity of quantum holography. Here, we propose a method to realize high-dimensional quantum holography by using high-dimensional orbital angular momentum (OAM) entanglement. A high capacity OAM-encoded quantum holographic system can be obtained by multiplexing a wide range of OAM-dependent holographic images. Proof-of-principle experiments with four- and six-dimensional OAM entangled states have been implemented and verify the feasibility of our idea. Our experimental results also demonstrate that the high-dimensional quantum holography shows a high robustness to classical noise. Furthermore, OAMselective holographic scheme for quantum encryption is proposed and demonstrated. Comparing with the previous schemes, the level of security of holographic imaging encryption system can be greatly improved in our high-dimensional quantum holography

    Study of Drug Resistance in Chemotherapy Induced by Extracellular Vesicles on a Microchip

    No full text
    Drug resistance in chemotherapy has been greatly challenging for cancer treatment. Research has revealed that extracellular vesicles (EVs) secreted by drug-resistant cells could induce chemoresistance in susceptible cells. However, there are few ways to give direct evidence of it. Herein, we have proposed a microchip-based system to study the drug resistance of a wild-type human lung adenocarcinoma cell line (A549/WT) induced by EVs derived from A549/DDP cells that are resistant to cisplatin (DDP) inherently. EVs derived from A549/DDP were proved to be the crucial factor that enhanced the resistance of A549/WT to DDP through live and dead cell staining, cell viability testing, and immunofluorescence of P-glycoprotein in the off-chip assay. Then, it was further validated that drug resistance of A549/WT cells to DDP significantly increased after being cocultured with A549/DDP cells within 96 h in the on-chip assay. These findings proved that the change of A549/WT drug resistance was caused by intercellular interaction, which was mainly mediated by EVs. In addition, we successfully reversed the EV-induced drug resistance of A549/WT cells by combining DDP and metformin, a hypoglycemic drug with low cytotoxicity when used alone. This microchip system provides a novel tool that has great potential for the investigation of cell interaction, drug resistance, and the tumor microenvironment in fundamental and clinical medicine

    Deciphering the resistance mechanism of RET kinase mutant against vandetanib and nintedanib using molecular dynamics simulations

    No full text
    The RET protein is a transmembrane receptor tyrosine kinase (RTK) whose oncogenic mutations or fusions are closely related to human cancers such as thyroid and non-small cell lung cancer. Vandetanib as a clinical-approved protein-tyrosine kinase inhibitor (TKI) exhibits anti-cancer efficacy by blocking the RET ATP-binding site, but drug resistance was observed for the RETG810A mutant. Recent studies have identified another TKI nintedanib as an effective molecule to inhibit vandetanib-resistant RETG810A. However, there is no clear evidence of why nintedanib and vandetanib displayed different inhibitory activities towards RETG810A. Here, we exploited molecular dynamic (MD) simulations to compare the interactions of the RETG810A mutant with nintedanib and vandetanib. A higher structural flexibility of the activation loop was observed in the nintedanib-bound RETG810A, which may result in discrepant autophosphorylation activity in the nintedanib- and vandetanib-bound RET kinase, causing differentiated pharmacological effects of the two compounds. Molecular mechanics/Poisson-Bolzmann surface area method suggested that nintedanib had a higher affinity towards RETG810A over vandetanib, accounting for its better inhibitory effect as an ATP-competitive compound. These results depicted the underlying mechanism for the different inhibitory efficacy of nintedanib and vandetanib on RETG810A from both conformational and energetic aspects. Furthermore, we also found that both compounds maintained the ‘DFG-in, αC-helix-in, and activation loop-open’ conformation of RETG810A, which is the characteristic of the active state. Together, our results provide comprehensive mechanistic insights into nintedanib’s capability in inhibiting vandetanib-resistant RET mutant and enlighten future structural-based optimisation of RET TKIs to overcome drug resistance.</p

    Table_9_Integrated Transcriptomic and Proteomic Analyses of the Interaction Between Chicken Synovial Fibroblasts and Mycoplasma synoviae.XLSX

    No full text
    Mycoplasma synoviae (MS), which causes respiratory disease, eggshell apex abnormalities, infectious synovitis, and arthritis in avian species, has become an economically detrimental poultry pathogen in recent years. In China, the disease is characterized by infectious synovitis and arthritis. However, the mechanism by which MS causes infectious synovitis and arthritis remains unknown. Increasing evidence suggests that synovial fibroblasts (SF) play a key role in the pathogenesis of arthritis. Here, both RNA sequencing and tandem mass tag analyses are utilized to compare the response of primary chicken SF (CSF) following infection with and without MS. The host response between non-infected and infected cells was remarkably different at both the mRNA and protein levels. In total, 2,347 differentially expressed genes (DEGs) (upregulated, n = 1,137; downregulated, n = 1,210) and 221 differentially expressed proteins (DEPs) (upregulated, n = 129; downregulated, n = 92) were detected in the infected group. A correlation analysis indicated a moderate positive correlation between the mRNA and protein level changes in MS-infected CSF. At both the transcriptomic and proteomic levels, 149 DEGs were identified; 88 genes were upregulated and 61 genes were downregulated in CSF. Additionally, part of these regulated genes and their protein products were grouped into seven categories: proliferation-related and apoptosis-related factors, inflammatory mediators, proangiogenic factors, antiangiogenic factors, matrix metalloproteinases, and other arthritis-related proteins. These proteins may be involved in the pathogenesis of MS-induced arthritis in chickens. To our knowledge, this is the first integrated analysis on the mechanism of CSF-MS interactions that combined transcriptomic and proteomic technologies. In this study, many key candidate genes and their protein products related to MS-induced infectious synovitis and arthritis were identified.</p

    Table_6_Integrated Transcriptomic and Proteomic Analyses of the Interaction Between Chicken Synovial Fibroblasts and Mycoplasma synoviae.XLSX

    No full text
    Mycoplasma synoviae (MS), which causes respiratory disease, eggshell apex abnormalities, infectious synovitis, and arthritis in avian species, has become an economically detrimental poultry pathogen in recent years. In China, the disease is characterized by infectious synovitis and arthritis. However, the mechanism by which MS causes infectious synovitis and arthritis remains unknown. Increasing evidence suggests that synovial fibroblasts (SF) play a key role in the pathogenesis of arthritis. Here, both RNA sequencing and tandem mass tag analyses are utilized to compare the response of primary chicken SF (CSF) following infection with and without MS. The host response between non-infected and infected cells was remarkably different at both the mRNA and protein levels. In total, 2,347 differentially expressed genes (DEGs) (upregulated, n = 1,137; downregulated, n = 1,210) and 221 differentially expressed proteins (DEPs) (upregulated, n = 129; downregulated, n = 92) were detected in the infected group. A correlation analysis indicated a moderate positive correlation between the mRNA and protein level changes in MS-infected CSF. At both the transcriptomic and proteomic levels, 149 DEGs were identified; 88 genes were upregulated and 61 genes were downregulated in CSF. Additionally, part of these regulated genes and their protein products were grouped into seven categories: proliferation-related and apoptosis-related factors, inflammatory mediators, proangiogenic factors, antiangiogenic factors, matrix metalloproteinases, and other arthritis-related proteins. These proteins may be involved in the pathogenesis of MS-induced arthritis in chickens. To our knowledge, this is the first integrated analysis on the mechanism of CSF-MS interactions that combined transcriptomic and proteomic technologies. In this study, many key candidate genes and their protein products related to MS-induced infectious synovitis and arthritis were identified.</p

    Table_4_Integrated Transcriptomic and Proteomic Analyses of the Interaction Between Chicken Synovial Fibroblasts and Mycoplasma synoviae.XLSX

    No full text
    Mycoplasma synoviae (MS), which causes respiratory disease, eggshell apex abnormalities, infectious synovitis, and arthritis in avian species, has become an economically detrimental poultry pathogen in recent years. In China, the disease is characterized by infectious synovitis and arthritis. However, the mechanism by which MS causes infectious synovitis and arthritis remains unknown. Increasing evidence suggests that synovial fibroblasts (SF) play a key role in the pathogenesis of arthritis. Here, both RNA sequencing and tandem mass tag analyses are utilized to compare the response of primary chicken SF (CSF) following infection with and without MS. The host response between non-infected and infected cells was remarkably different at both the mRNA and protein levels. In total, 2,347 differentially expressed genes (DEGs) (upregulated, n = 1,137; downregulated, n = 1,210) and 221 differentially expressed proteins (DEPs) (upregulated, n = 129; downregulated, n = 92) were detected in the infected group. A correlation analysis indicated a moderate positive correlation between the mRNA and protein level changes in MS-infected CSF. At both the transcriptomic and proteomic levels, 149 DEGs were identified; 88 genes were upregulated and 61 genes were downregulated in CSF. Additionally, part of these regulated genes and their protein products were grouped into seven categories: proliferation-related and apoptosis-related factors, inflammatory mediators, proangiogenic factors, antiangiogenic factors, matrix metalloproteinases, and other arthritis-related proteins. These proteins may be involved in the pathogenesis of MS-induced arthritis in chickens. To our knowledge, this is the first integrated analysis on the mechanism of CSF-MS interactions that combined transcriptomic and proteomic technologies. In this study, many key candidate genes and their protein products related to MS-induced infectious synovitis and arthritis were identified.</p

    Table_1_Integrated Transcriptomic and Proteomic Analyses of the Interaction Between Chicken Synovial Fibroblasts and Mycoplasma synoviae.XLSX

    No full text
    Mycoplasma synoviae (MS), which causes respiratory disease, eggshell apex abnormalities, infectious synovitis, and arthritis in avian species, has become an economically detrimental poultry pathogen in recent years. In China, the disease is characterized by infectious synovitis and arthritis. However, the mechanism by which MS causes infectious synovitis and arthritis remains unknown. Increasing evidence suggests that synovial fibroblasts (SF) play a key role in the pathogenesis of arthritis. Here, both RNA sequencing and tandem mass tag analyses are utilized to compare the response of primary chicken SF (CSF) following infection with and without MS. The host response between non-infected and infected cells was remarkably different at both the mRNA and protein levels. In total, 2,347 differentially expressed genes (DEGs) (upregulated, n = 1,137; downregulated, n = 1,210) and 221 differentially expressed proteins (DEPs) (upregulated, n = 129; downregulated, n = 92) were detected in the infected group. A correlation analysis indicated a moderate positive correlation between the mRNA and protein level changes in MS-infected CSF. At both the transcriptomic and proteomic levels, 149 DEGs were identified; 88 genes were upregulated and 61 genes were downregulated in CSF. Additionally, part of these regulated genes and their protein products were grouped into seven categories: proliferation-related and apoptosis-related factors, inflammatory mediators, proangiogenic factors, antiangiogenic factors, matrix metalloproteinases, and other arthritis-related proteins. These proteins may be involved in the pathogenesis of MS-induced arthritis in chickens. To our knowledge, this is the first integrated analysis on the mechanism of CSF-MS interactions that combined transcriptomic and proteomic technologies. In this study, many key candidate genes and their protein products related to MS-induced infectious synovitis and arthritis were identified.</p
    corecore