2,123 research outputs found

    Short note on two output-dependent hidden Markov models

    Get PDF
    The purpose of this note is to study the assumption of mutual information independence", which is used by Zhou (2005) for deriving an output-dependent hidden Markov model, the so-called discriminative HMM (D-HMM), in the context of determining a stochastic optimal sequence of hidden states. The assumption is extended to derive its generative counterpart, the G-HMM. In addition, state-dependent representations for two output-dependent HMMs, namely HMMSDO (Li, 2005) and D-HMM, are presented

    Learning Local Metrics and Influential Regions for Classification

    Get PDF
    The performance of distance-based classifiers heavily depends on the underlying distance metric, so it is valuable to learn a suitable metric from the data. To address the problem of multimodality, it is desirable to learn local metrics. In this short paper, we define a new intuitive distance with local metrics and influential regions, and subsequently propose a novel local metric learning method for distance-based classification. Our key intuition is to partition the metric space into influential regions and a background region, and then regulate the effectiveness of each local metric to be within the related influential regions. We learn local metrics and influential regions to reduce the empirical hinge loss, and regularize the parameters on the basis of a resultant learning bound. Encouraging experimental results are obtained from various public and popular data sets

    A Survey on Deep Generative 3D-aware Image Synthesis

    Get PDF
    Recent years have seen remarkable progress in deep learning powered visual content creation. This includes deep generative 3D-aware image synthesis, which produces high-idelity images in a 3D-consistent manner while simultaneously capturing compact surfaces of objects from pure image collections without the need for any 3D supervision, thus bridging the gap between 2D imagery and 3D reality. The ield of computer vision has been recently captivated by the task of deep generative 3D-aware image synthesis, with hundreds of papers appearing in top-tier journals and conferences over the past few years (mainly the past two years), but there lacks a comprehensive survey of this remarkable and swift progress. Our survey aims to introduce new researchers to this topic, provide a useful reference for related works, and stimulate future research directions through our discussion section. Apart from the presented papers, we aim to constantly update the latest relevant papers along with corresponding implementations at this https URL [https://weihaox.github.io/3D-aware-Gen]

    A Survey on Deep Generative 3D-aware Image Synthesis

    Get PDF
    Recent years have seen remarkable progress in deep learning powered visual content creation. This includes deep generative 3D-aware image synthesis, which produces high-fidelity images in a 3D-consistent manner while simultaneously capturing compact surfaces of objects from pure image collections without the need for any 3D supervision, thus bridging the gap between 2D imagery and 3D reality. The field of computer vision has been recently captivated by the task of deep generative 3D-aware image synthesis, with hundreds of papers appearing in top-tier journals and conferences over the past few years (mainly the past two years), but there lacks a comprehensive survey of this remarkable and swift progress. Our survey aims to introduce new researchers to this topic, provide a useful reference for related works, and stimulate future research directions through our discussion section. Apart from the presented papers, we aim to constantly update the latest relevant papers along with corresponding implementations at https://weihaox.github.io/3D-aware-Gen

    Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm

    Full text link
    By using transitionless quantum driving algorithm (TQDA), we present an efficient scheme for the shortcuts to the holonomic quantum computation (HQC). It works in decoherence-free subspace (DFS) and the adiabatic process can be speeded up in the shortest possible time. More interestingly, we give a physical implementation for our shortcuts to HQC with nitrogen-vacancy centers in diamonds dispersively coupled to a whispering-gallery mode microsphere cavity. It can be efficiently realized by controlling appropriately the frequencies of the external laser pulses. Also, our scheme has good scalability with more qubits. Different from previous works, we first use TQDA to realize a universal HQC in DFS, including not only two noncommuting accelerated single-qubit holonomic gates but also a accelerated two-qubit holonomic controlled-phase gate, which provides the necessary shortcuts for the complete set of gates required for universal quantum computation. Moreover, our experimentally realizable shortcuts require only two-body interactions, not four-body ones, and they work in the dispersive regime, which relax greatly the difficulty of their physical implementation in experiment. Our numerical calculations show that the present scheme is robust against decoherence with current experimental parameters.Comment: 8 pages, 2 figure

    Decorrelation of Neutral Vector Variables: Theory and Applications

    Full text link
    In this paper, we propose novel strategies for neutral vector variable decorrelation. Two fundamental invertible transformations, namely serial nonlinear transformation and parallel nonlinear transformation, are proposed to carry out the decorrelation. For a neutral vector variable, which is not multivariate Gaussian distributed, the conventional principal component analysis (PCA) cannot yield mutually independent scalar variables. With the two proposed transformations, a highly negatively correlated neutral vector can be transformed to a set of mutually independent scalar variables with the same degrees of freedom. We also evaluate the decorrelation performances for the vectors generated from a single Dirichlet distribution and a mixture of Dirichlet distributions. The mutual independence is verified with the distance correlation measurement. The advantages of the proposed decorrelation strategies are intensively studied and demonstrated with synthesized data and practical application evaluations

    Domain Fingerprints for No-reference Image Quality Assessment

    Get PDF
    Human fingerprints are detailed and nearly unique markers of human identity. Such a unique and stable fingerprint is also left on each acquired image. It can reveal how an image was degraded during the image acquisition procedure and thus is closely related to the quality of an image. In this work, we propose a new no-reference image quality assessment (NR-IQA) approach called domain-aware IQA (DA-IQA), which for the first time introduces the concept of domain fingerprint to the NR-IQA field. The domain fingerprint of an image is learned from image collections of different degradations and then used as the unique characteristics to identify the degradation sources and assess the quality of the image. To this end, we design a new domain-aware architecture, which enables simultaneous determination of both the distortion sources and the quality of an image. With the distortion in an image better characterized, the image quality can be more accurately assessed, as verified by extensive experiments, which show that the proposed DA-IQA performs better than almost all the compared state-of-the-art NR-IQA methods.Comment: accepted by IEEE Transactions on Circuits and Systems for Video Technology (TCSVT
    • …
    corecore