2,123 research outputs found
Short note on two output-dependent hidden Markov models
The purpose of this note is to study the assumption of mutual information independence", which is used by Zhou (2005) for deriving an output-dependent hidden Markov model, the so-called discriminative HMM (D-HMM), in the context of determining a stochastic optimal sequence of hidden states. The assumption is extended to derive its generative counterpart, the G-HMM. In addition, state-dependent representations for two output-dependent HMMs, namely HMMSDO (Li, 2005) and D-HMM, are presented
Learning Local Metrics and Influential Regions for Classification
The performance of distance-based classifiers heavily depends on the
underlying distance metric, so it is valuable to learn a suitable metric from
the data. To address the problem of multimodality, it is desirable to learn
local metrics. In this short paper, we define a new intuitive distance with
local metrics and influential regions, and subsequently propose a novel local
metric learning method for distance-based classification. Our key intuition is
to partition the metric space into influential regions and a background region,
and then regulate the effectiveness of each local metric to be within the
related influential regions. We learn local metrics and influential regions to
reduce the empirical hinge loss, and regularize the parameters on the basis of
a resultant learning bound. Encouraging experimental results are obtained from
various public and popular data sets
A Survey on Deep Generative 3D-aware Image Synthesis
Recent years have seen remarkable progress in deep learning powered visual content creation. This includes deep generative 3D-aware image synthesis, which produces high-idelity images in a 3D-consistent manner while simultaneously capturing compact surfaces of objects from pure image collections without the need for any 3D supervision, thus bridging the gap between 2D imagery and 3D reality. The ield of computer vision has been recently captivated by the task of deep generative 3D-aware image synthesis, with hundreds of papers appearing in top-tier journals and conferences over the past few years (mainly the past two years), but there lacks a comprehensive survey of this remarkable and swift progress. Our survey aims to introduce new researchers to this topic, provide a useful reference for related works, and stimulate future research directions through our discussion section. Apart from the presented papers, we aim to constantly update the latest relevant papers along with corresponding implementations at this https URL [https://weihaox.github.io/3D-aware-Gen]
A Survey on Deep Generative 3D-aware Image Synthesis
Recent years have seen remarkable progress in deep learning powered visual content creation. This includes deep generative 3D-aware image synthesis, which produces high-fidelity images in a 3D-consistent manner while simultaneously capturing compact surfaces of objects from pure image collections without the need for any 3D supervision, thus bridging the gap between 2D imagery and 3D reality. The field of computer vision has been recently captivated by the task of deep generative 3D-aware image synthesis, with hundreds of papers appearing in top-tier journals and conferences over the past few years (mainly the past two years), but there lacks a comprehensive survey of this remarkable and swift progress. Our survey aims to introduce new researchers to this topic, provide a useful reference for related works, and stimulate future research directions through our discussion section. Apart from the presented papers, we aim to constantly update the latest relevant papers along with corresponding implementations at https://weihaox.github.io/3D-aware-Gen
Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm
By using transitionless quantum driving algorithm (TQDA), we present an
efficient scheme for the shortcuts to the holonomic quantum computation (HQC).
It works in decoherence-free subspace (DFS) and the adiabatic process can be
speeded up in the shortest possible time. More interestingly, we give a
physical implementation for our shortcuts to HQC with nitrogen-vacancy centers
in diamonds dispersively coupled to a whispering-gallery mode microsphere
cavity. It can be efficiently realized by controlling appropriately the
frequencies of the external laser pulses. Also, our scheme has good scalability
with more qubits. Different from previous works, we first use TQDA to realize a
universal HQC in DFS, including not only two noncommuting accelerated
single-qubit holonomic gates but also a accelerated two-qubit holonomic
controlled-phase gate, which provides the necessary shortcuts for the complete
set of gates required for universal quantum computation. Moreover, our
experimentally realizable shortcuts require only two-body interactions, not
four-body ones, and they work in the dispersive regime, which relax greatly the
difficulty of their physical implementation in experiment. Our numerical
calculations show that the present scheme is robust against decoherence with
current experimental parameters.Comment: 8 pages, 2 figure
Decorrelation of Neutral Vector Variables: Theory and Applications
In this paper, we propose novel strategies for neutral vector variable
decorrelation. Two fundamental invertible transformations, namely serial
nonlinear transformation and parallel nonlinear transformation, are proposed to
carry out the decorrelation. For a neutral vector variable, which is not
multivariate Gaussian distributed, the conventional principal component
analysis (PCA) cannot yield mutually independent scalar variables. With the two
proposed transformations, a highly negatively correlated neutral vector can be
transformed to a set of mutually independent scalar variables with the same
degrees of freedom. We also evaluate the decorrelation performances for the
vectors generated from a single Dirichlet distribution and a mixture of
Dirichlet distributions. The mutual independence is verified with the distance
correlation measurement. The advantages of the proposed decorrelation
strategies are intensively studied and demonstrated with synthesized data and
practical application evaluations
Domain Fingerprints for No-reference Image Quality Assessment
Human fingerprints are detailed and nearly unique markers of human identity.
Such a unique and stable fingerprint is also left on each acquired image. It
can reveal how an image was degraded during the image acquisition procedure and
thus is closely related to the quality of an image. In this work, we propose a
new no-reference image quality assessment (NR-IQA) approach called domain-aware
IQA (DA-IQA), which for the first time introduces the concept of domain
fingerprint to the NR-IQA field. The domain fingerprint of an image is learned
from image collections of different degradations and then used as the unique
characteristics to identify the degradation sources and assess the quality of
the image. To this end, we design a new domain-aware architecture, which
enables simultaneous determination of both the distortion sources and the
quality of an image. With the distortion in an image better characterized, the
image quality can be more accurately assessed, as verified by extensive
experiments, which show that the proposed DA-IQA performs better than almost
all the compared state-of-the-art NR-IQA methods.Comment: accepted by IEEE Transactions on Circuits and Systems for Video
Technology (TCSVT
- …