18 research outputs found
DataSheet_1_Identification of autophagy-related genes in osteoarthritis articular cartilage and their roles in immune infiltration.docx
BackgroundAutophagy plays a critical role in the progression of osteoarthritis (OA), mainly by regulating inflammatory and immune responses. However, the underlying mechanisms remain unclear. This study aimed to investigate the potential relevance of autophagy-related genes (ARGs) associated with infiltrating immune cells in OA.MethodsGSE114007, GSE169077, and ARGs were obtained from the Gene Expression Omnibus (GEO) database and the Human Autophagy database. R software was used to identify the differentially expressed autophagy-related genes (DEARGs) in OA. Functional enrichment and protein–protein interaction (PPI) analyses were performed to explore the role of DEARGs in OA cartilage, and then Cytoscape was utilized to screen hub ARGs. Single-sample gene set enrichment analysis (ssGSEA) was used to conduct immune infiltration analysis and evaluate the potential correlation of key ARGs and immune cell infiltration. Then, the expression levels of hub ARGs in OA were further verified by the GSE169077 and qRT-PCR. Finally, Western blotting and immunohistochemistry were used to validate the final hub ARGs.ResultsA total of 24 downregulated genes and five upregulated genes were identified, and these genes were enriched in autophagy, mitophagy, and inflammation-related pathways. The intersection results identified nine hub genes, namely, CDKN1A, DDIT3, FOS, VEGFA, RELA, MAP1LC3B, MYC, HSPA5, and HSPA8. GSE169077 and qRT-PCR validation results showed that only four genes, CDKN1A, DDT3, MAP1LC3B, and MYC, were consistent with the bioinformatics analysis results. Western blotting and immunohistochemical (IHC) showed that the expression of these four genes was significantly downregulated in the OA group, which is consistent with the qPCR results. Immune infiltration correlation analysis indicated that DDIT3 was negatively correlated with immature dendritic cells in OA, and FOS was positively correlated with eosinophils.ConclusionCDKN1A, DDIT3, MAP1LC3B, and MYC were identified as ARGs that were closely associated with immune infiltration in OA cartilage. Among them, DDIT3 showed a strong negative correlation with immature dendritic cells. This study found that the interaction between ARGs and immune cell infiltration may play a crucial role in the pathogenesis of OA; however, the specific interaction mechanism needs further research to be clarified. This study provides new insights to further understand the molecular mechanisms of immunity involved in the process of OA by autophagy.</p
Myeloperoxidase Polymorphism, Menopausal Status, and Breast Cancer Risk: An Update Meta-Analysis
<div><p>Myeloperoxidase (MPO) is a metabolic/oxidative lysosomal enzyme secreted by reactive neutrophils at the sites of inflamed organs and tissues during phagocytosis. MPO has been either directly or indirectly linked to neoplasia, which is a well-established risk factor for many types of cancer. A large number of studies have reported the role of MPO G-463A polymorphism regarding breast-cancer risk. However, the published findings are inconsistent. Therefore, we conducted a meta-analysis to determine more precise estimations for the relationship. Eligible studies were identified by searching several electronic databases for relevant reports published before June 2012. According to the inclusion criteria and exclusion criteria, a total of five eligible studies were included in the pooled analyses. When the five eligible studies concerning MPO G-463A polymorphism were pooled into this meta-analysis, there was no evidence found for a significant association between MPO G-463A polymorphism and breast-cancer risk in any genetic model. We also categorized by ethnicity (Caucasian or Asian) for subgroup analysis; according to this subgroup analysis, we found no significant association between MPO G-463A polymorphism and breast-cancer risk in any genetic model. However, in the stratified analysis for the premenopausal group, women carrying the AA genotype were found to have a significantly reduced risk (OR = 0.56, 95% CI 0.34–0.94, p = 0.027). Under the recessive model, there was a significant association between MPO G-463A polymorphism and breast-cancer risk (OR = 0.57, 95% CI 0.34–0.93, p = 0.025). We conclude that MPO-G463A polymorphism might not be a good predictor of breast-cancer risk, though menopausal status modified women’s risk of developing breast cancer.</p></div
Publication bias tests for comparisons involving the MPO polymorphism.
<p>Publication bias tests for comparisons involving the MPO polymorphism.</p
Genetic polymorphism of MPO and breast cancer risk.
a<p><i>P</i> value for heterogeneity based on Q test.</p
Meta-analysis of OR for MPO polymorphism associated with breast cancer in pre-menopausal women (AA versus GG).
<p>Meta-analysis of OR for MPO polymorphism associated with breast cancer in pre-menopausal women (AA versus GG).</p
Genetic polymorphism of MPO and breast cancer risk in pre-menopausal women.
a<p><i>P</i> value for heterogeneity based on Q test.</p
Scale for methodological quality assessment.
<p>Scale for methodological quality assessment.</p
Meta-analysis of OR for MPO polymorphism no associated with breast cancer in post-menopausal women (AA versus GG).
<p>Meta-analysis of OR for MPO polymorphism no associated with breast cancer in post-menopausal women (AA versus GG).</p
Genetic polymorphism of MPO and breast cancer risk in post-menopausal women.
a<p><i>P</i> value for heterogeneity based on Q test.</p