19,130 research outputs found
Compressive Imaging via Approximate Message Passing with Image Denoising
We consider compressive imaging problems, where images are reconstructed from
a reduced number of linear measurements. Our objective is to improve over
existing compressive imaging algorithms in terms of both reconstruction error
and runtime. To pursue our objective, we propose compressive imaging algorithms
that employ the approximate message passing (AMP) framework. AMP is an
iterative signal reconstruction algorithm that performs scalar denoising at
each iteration; in order for AMP to reconstruct the original input signal well,
a good denoiser must be used. We apply two wavelet based image denoisers within
AMP. The first denoiser is the "amplitude-scaleinvariant Bayes estimator"
(ABE), and the second is an adaptive Wiener filter; we call our AMP based
algorithms for compressive imaging AMP-ABE and AMP-Wiener. Numerical results
show that both AMP-ABE and AMP-Wiener significantly improve over the state of
the art in terms of runtime. In terms of reconstruction quality, AMP-Wiener
offers lower mean square error (MSE) than existing compressive imaging
algorithms. In contrast, AMP-ABE has higher MSE, because ABE does not denoise
as well as the adaptive Wiener filter.Comment: 15 pages; 2 tables; 7 figures; to appear in IEEE Trans. Signal
Proces
Effects of Disease Type and Latency on the Value of Mortality Risk
We evaluate the effects of disease type and latency on willingness to pay (WTP) to reduce environmental risks of chronic, degenerative disease. Using contingent-valuation data collected from approximately 1,200 respondents in Taiwan, we find that WTP declines with latency between exposure to environmental contaminants and manifestation of any resulting disease, at a 1.5 percent annual rate for a 20 year latency period. WTP to reduce the risk of cancer is estimated to be about one-third larger than WTP to reduce risk of a similar chronic, degenerative disease. The value of risk reduction also depends on the affected organ, environmental pathway, or payment mechanism: estimated WTP to reduce the risk of lung disease due to industrial air pollution is twice as large as WTP to reduce the risk of liver disease due to contaminated drinking water.
Multilevel Markov Chain Monte Carlo Method for High-Contrast Single-Phase Flow Problems
In this paper we propose a general framework for the uncertainty
quantification of quantities of interest for high-contrast single-phase flow
problems. It is based on the generalized multiscale finite element method
(GMsFEM) and multilevel Monte Carlo (MLMC) methods. The former provides a
hierarchy of approximations of different resolution, whereas the latter gives
an efficient way to estimate quantities of interest using samples on different
levels. The number of basis functions in the online GMsFEM stage can be varied
to determine the solution resolution and the computational cost, and to
efficiently generate samples at different levels. In particular, it is cheap to
generate samples on coarse grids but with low resolution, and it is expensive
to generate samples on fine grids with high accuracy. By suitably choosing the
number of samples at different levels, one can leverage the expensive
computation in larger fine-grid spaces toward smaller coarse-grid spaces, while
retaining the accuracy of the final Monte Carlo estimate. Further, we describe
a multilevel Markov chain Monte Carlo method, which sequentially screens the
proposal with different levels of approximations and reduces the number of
evaluations required on fine grids, while combining the samples at different
levels to arrive at an accurate estimate. The framework seamlessly integrates
the multiscale features of the GMsFEM with the multilevel feature of the MLMC
methods following the work in \cite{ketelson2013}, and our numerical
experiments illustrate its efficiency and accuracy in comparison with standard
Monte Carlo estimates.Comment: 29 pages, 6 figure
- …