19,130 research outputs found

    Compressive Imaging via Approximate Message Passing with Image Denoising

    Full text link
    We consider compressive imaging problems, where images are reconstructed from a reduced number of linear measurements. Our objective is to improve over existing compressive imaging algorithms in terms of both reconstruction error and runtime. To pursue our objective, we propose compressive imaging algorithms that employ the approximate message passing (AMP) framework. AMP is an iterative signal reconstruction algorithm that performs scalar denoising at each iteration; in order for AMP to reconstruct the original input signal well, a good denoiser must be used. We apply two wavelet based image denoisers within AMP. The first denoiser is the "amplitude-scaleinvariant Bayes estimator" (ABE), and the second is an adaptive Wiener filter; we call our AMP based algorithms for compressive imaging AMP-ABE and AMP-Wiener. Numerical results show that both AMP-ABE and AMP-Wiener significantly improve over the state of the art in terms of runtime. In terms of reconstruction quality, AMP-Wiener offers lower mean square error (MSE) than existing compressive imaging algorithms. In contrast, AMP-ABE has higher MSE, because ABE does not denoise as well as the adaptive Wiener filter.Comment: 15 pages; 2 tables; 7 figures; to appear in IEEE Trans. Signal Proces

    Effects of Disease Type and Latency on the Value of Mortality Risk

    Get PDF
    We evaluate the effects of disease type and latency on willingness to pay (WTP) to reduce environmental risks of chronic, degenerative disease. Using contingent-valuation data collected from approximately 1,200 respondents in Taiwan, we find that WTP declines with latency between exposure to environmental contaminants and manifestation of any resulting disease, at a 1.5 percent annual rate for a 20 year latency period. WTP to reduce the risk of cancer is estimated to be about one-third larger than WTP to reduce risk of a similar chronic, degenerative disease. The value of risk reduction also depends on the affected organ, environmental pathway, or payment mechanism: estimated WTP to reduce the risk of lung disease due to industrial air pollution is twice as large as WTP to reduce the risk of liver disease due to contaminated drinking water.

    Multilevel Markov Chain Monte Carlo Method for High-Contrast Single-Phase Flow Problems

    Full text link
    In this paper we propose a general framework for the uncertainty quantification of quantities of interest for high-contrast single-phase flow problems. It is based on the generalized multiscale finite element method (GMsFEM) and multilevel Monte Carlo (MLMC) methods. The former provides a hierarchy of approximations of different resolution, whereas the latter gives an efficient way to estimate quantities of interest using samples on different levels. The number of basis functions in the online GMsFEM stage can be varied to determine the solution resolution and the computational cost, and to efficiently generate samples at different levels. In particular, it is cheap to generate samples on coarse grids but with low resolution, and it is expensive to generate samples on fine grids with high accuracy. By suitably choosing the number of samples at different levels, one can leverage the expensive computation in larger fine-grid spaces toward smaller coarse-grid spaces, while retaining the accuracy of the final Monte Carlo estimate. Further, we describe a multilevel Markov chain Monte Carlo method, which sequentially screens the proposal with different levels of approximations and reduces the number of evaluations required on fine grids, while combining the samples at different levels to arrive at an accurate estimate. The framework seamlessly integrates the multiscale features of the GMsFEM with the multilevel feature of the MLMC methods following the work in \cite{ketelson2013}, and our numerical experiments illustrate its efficiency and accuracy in comparison with standard Monte Carlo estimates.Comment: 29 pages, 6 figure
    corecore