36 research outputs found
Measurement of single electron spin with sub-micron Hall magnetometer
Submicron Hall magnetometry has been demonstrated as an efficient technique
to probe extremely weak magnetic fields. In this letter, we analyze the
possibility of employing it to detect single electron spin. Signal strength and
readout time are estimated and discussed with respect to a number of practical
issues.Comment: 4 pages, 2 figur
Non-Markovian correlation functions for open quantum systems
Beyond the conventional quantum regression theorem, a general formula for
non-Markovian correlation functions of arbitrary system operators both in the
time- and frequency-domain is given. We approach the problem by transforming
the conventional time-nonlocal master equation into dispersed time-local
equations-of-motion. The validity of our approximations is discussed and we
find that the non-Markovian terms have to be included for short times. While
calculations of the density matrix at short times suffer from the initial value
problem, a correlation function has a well defined initial state. The resulting
formula for the non-Markovian correlation function has a simple structure and
is as convenient in its application as the conventional quantum regression
theorem for the Markovian case. For illustrations, we apply our method to
investigate the spectrum of the current fluctuations of interacting quantum
dots contacted with two electrodes. The corresponding non-Markovian
characteristics are demonstrated.Comment: 11 pages, 5 figure
Optical Manipulation of Single Electron Spin in Doped and Undoped Quantum Dots
The optical manipulation of electron spins is of great benefit to solid-state
quantum information processing. In this letter, we provide a comparative study
on the ultrafast optical manipulation of single electron spin in the doped and
undoped quantum dots. The study indicates that the experimental breakthrough
can be preliminarily made in the undoped quantum dots, because of the
relatively less demand.Comment: 3 pages, 3 figure
Theoretical investigation of the dynamic electronic response of a quantum dot driven by time-dependent voltage
We present a comprehensive theoretical investigation on the dynamic
electronic response of a noninteracting quantum dot system to various forms of
time-dependent voltage applied to the single contact lead. Numerical
simulations are carried out by implementing a recently developed hierarchical
equations of motion formalism [J. Chem. Phys. 128, 234703 (2008)], which is
formally exact for a fermionic system interacting with grand canonical
fermionic reservoirs, in the presence of arbitrary time-dependent applied
chemical potentials. The dynamical characteristics of the transient transport
current evaluated in both linear and nonlinear response regimes are analyzed,
and the equivalent classic circuit corresponding to the coupled dot-lead system
is also discussed
Number-resolved master equation approach to quantum transport under the self-consistent Born approximation
We construct a particle-number(n)-resolved master equation (ME) approach
under the self-consistent Born approximation (SCBA) for quantum transport
through mesoscopic systems. The formulation is essentially non-Markovian and
incorporates the interlay of the multi-tunneling processes and many-body
correlations. The proposed n-SCBA-ME goes completely beyond the scope of the
Born-Markov master equation, being applicable to transport under small bias
voltage, in non-Markovian regime and with strong Coulomb correlations. For
steady state, it can recover not only the exact result of noninteracting
transport under arbitrary voltages, but also the challenging nonequilibrium
Kondo effect. Moreover, the n-SCBA-ME approach is efficient for the study of
shot noise.We demonstrate the application by a couple of representative
examples, including particularly the nonequilibrium Kondo system.Comment: arXiv admin note: substantial text overlap with arXiv:1302.638