3 research outputs found

    Ultrafast Photoluminescence in Quantum-Confined Silicon Nanocrystals Arises from an Amorphous Surface Layer

    No full text
    Here, we examine ultrafast photoluminescence produced from plasma-grown, colloidal silicon nanocrystals as a function of both particle size and lattice crystallinity. In particular, we quantify the decay time and spectral profiles of nominally few-picosecond direct-gap emission previously attributed to phononless electron–hole recombination. We find that the high-energy (400–600 nm, 2–3 eV) photoluminescence component consists of two decay processes with distinct time scales. The fastest photoluminescence exhibits an ∼30 ps decay constant largely independent of emission energy and particle size. Importantly, nearly identical temporal components and blue spectral features appear for amorphous particles. We thus associate high-energy, rapid emission with an amorphous component in all measured samples, as supported by Raman analysis and molecular dynamics simulation. Based on these observations, we advise that the observed dynamics proceed too slowly to originate from intraband carrier thermalization and instead suggest a nonradiative origin associated with the amorphous component

    Silicon Nanocrystals at Elevated Temperatures: Retention of Photoluminescence and Diamond Silicon to β‑Silicon Carbide Phase Transition

    No full text
    We report the photoluminescence (PL) properties of colloidal Si nanocrystals (NCs) up to 800 K and observe PL retention on par with core/shell structures of other compositions. These alkane-terminated Si NCs even emit at temperatures well above previously reported melting points for oxide-embedded particles. Using selected area electron diffraction (SAED), powder X-ray diffraction (XRD), liquid drop theory, and molecular dynamics (MD) simulations, we show that melting does not play a role at the temperatures explored experimentally in PL, and we observe a phase change to β-SiC in the presence of an electron beam. Loss of diffraction peaks (melting) with recovery of diamond-phase silicon upon cooling is observed under inert atmosphere by XRD. We further show that surface passivation by covalently bound ligands endures the experimental temperatures. These findings point to covalently bound organic ligands as a route to the development of NCs for use in high temperature applications, including concentrated solar cells and electrical lighting

    Broadband Absorbing Exciton–Plasmon Metafluids with Narrow Transparency Windows

    No full text
    Optical metafluids that consist of colloidal solutions of plasmonic and/or excitonic nanomaterials may play important roles as functional working fluids or as means for producing solid metamaterial coatings. The concept of a metafluid employed here is based on the picture that a single ballistic photon, propagating through the metafluid, interacts with a large collection of specifically designed optically active nanocrystals. We demonstrate water-based metafluids that act as broadband electromagnetic absorbers in a spectral range of 200–3300 nm and feature a tunable narrow (∼100 nm) transparency window in the visible-to-near-infrared region. To define this transparency window, we employ plasmonic gold nanorods. We utilize excitonic boron-doped silicon nanocrystals as opaque optical absorbers (“optical wall”) in the UV and blue-green range of the spectrum. Water itself acts as an opaque “wall” in the near-infrared to infrared. We explore the limits of the concept of a “simple” metafluid by computationally testing and validating the effective medium approach based on the Beer–Lambert law. According to our simulations and experiments, particle aggregation and the associated decay of the window effect are one example of the failure of the simple metafluid concept due to strong interparticle interactions
    corecore