60 research outputs found

    Structural insights into molecular mechanism for N6-adenosine methylation by MT-A70 family methyltransferase METTL4

    Get PDF
    METTL4 belongs to a subclade of MT-A70 family members of methyltransferase (MTase) proteins shown to mediate N6-adenosine methylation for both RNA and DNA in diverse eukaryotes. Here, we report that Arabidopsis METTL4 functions as U2 snRNA MTase for N6−2’-O-dimethyladenosine (m6Am) in vivo that regulates flowering time, and specifically catalyzes N6-methylation of 2’-O-methyladenosine (Am) within a single-stranded RNA in vitro. The apo structures of full-length Arabidopsis METTL4 bound to S-adenosyl-L-methionine (SAM) and the complex structure with an Am-containing RNA substrate, combined with mutagenesis and in vitro enzymatic assays, uncover a preformed L-shaped, positively-charged cavity surrounded by four loops for substrate binding and a catalytic center composed of conserved residues for specific Am nucleotide recognition and N6-methylation activity. Structural comparison of METTL4 with the mRNA m6A enzyme METTL3/METTL14 heterodimer and modeling analysis suggest a catalytic mechanism for N6-adenosine methylation by METTL4, which may be shared among MT-A70 family members

    Selective hydrogenolysis of aryl ethers over a nitrogen-doped porous carbon supported Ni–CeO<sub>2</sub> catalyst at low temperature

    Full text link
    The selective depolymerization of lignin into aromatics is a sustainable way to improve the economics of the overall biorefinery process.</p

    Hydrolysis behaviors of sugarcane bagasse pith in subcritical carbon dioxide–water

    Full text link
    Subcritical CO2–water exhibits a high capacity for dissolution and catalysis to promote the hydrolysis of sugarcane bagasse pith.</p
    corecore