6 research outputs found
Image_1_Alterations in intra- and inter-network connectivity associated with cognition impairment in insulinoma patients.pdf
ObjectiveCognitive dysfunction is common in insulinoma patients, but the underlying neural mechanisms are less well understood. This study aimed to explore the alterations of intra- and inter-network connectivity patterns associated with patients with insulinoma.MethodsResting-state fMRI were acquired from 13 insulinoma patients and 13 matched healthy controls (HCs). Group Independent component analysis (ICA) was employed to capture the resting-state networks (RSNs), then the intra- and inter-network connectivity patterns, were calculated and compared. Montreal Cognitive Assessment (MoCA) was used to assess the cognitive function. The relationship between connectivity patterns and MoCA scores was also examined.ResultsInsulinoma patients performed significantly worse on MoCA compared to HCs. The intra-network connectivity analysis revealed that patients with insulinoma showed decreased connectivity in the left medial superior frontal gyrus within anterior default mode network (aDMN), and decreased connectivity in right lingual gyrus within the visual network (VN). The intra-network connectivity analysis showed that patients with insulinoma had an increased connectivity between the inferior-posterior default mode network (ipDMN) and right frontoparietal network (rFPN) and decreased connectivity between the ipDMN and auditory network (AUN). There was a significant negative correlation between the ipDMN-rFPN connectivity and MoCA score.ConclusionThis study demonstrated significant abnormalities in the intra- and inter-network connectivity in patients with insulinoma, which may represent the neural mechanisms underlying the cognitive impairment in insulinoma patients.</p
MIC of 93 <i>Klebsiella pneumoniae</i> isolates against imipenem.
Note. Rows represent imipenem concentration gradients, and columns represent percentages of isolates.</p
Antibiotic resistance of CRKP isolates.
BackgroundCarbapenem-resistant Klebsiella pneumoniae (CRKP) infection is a serious problem in hospitals worldwide. We monitored a tertiary hospital in Changchun, Jilin Province, China, and found that CRKP was the major species among the carbapenem-resistant isolates in sewage. Subsequently, we evaluated the drug susceptibility, resistance genes, virulence genes, outer pore membrane protein-related genes (OmpK35 & OmpK 36), multi-locus sequence typing and replicons, biofilm formation capabilities, and resistance to chlorine-containing disinfectants among KP isolates. Identification of drug sensitivity, multiple resistance profiles were observed including 77 (82.80%) multidrug resistant (MDR), 16 (17.20%) extensive drug resistant (XDR). Some antibiotic resistance genes were detected, the most prevalent carbapenemase gene was blaKPC, and 16 resistance genes were associated with other antibiotics. In addition, 3 (3.23%) CRKP isolates demonstrated loss of OmpK-35 and 2 (2.15%) demonstrated loss of OmpK-36. In the detection of multi-locus sequence typing (MLST), 11 ST11 isolates carried virulence genes. The most common replicon type was IncFII. Biofilm-forming capabilities were demonstrated by 68.8% of the isolates, all of which were resistant to chlorine-containing disinfectants. The results of the study showed that antibiotic-resistant isolates, especially CRKP, could resist disinfectants in hospital wastewater, and improper treatment of hospital wastewater may lead to the spread of drug-resistant bacteria and their genes. Thus, these bacteria must be eliminated before being discharged into the municipal sewage system.</div
Replicon typing in CRKP isolates.
BackgroundCarbapenem-resistant Klebsiella pneumoniae (CRKP) infection is a serious problem in hospitals worldwide. We monitored a tertiary hospital in Changchun, Jilin Province, China, and found that CRKP was the major species among the carbapenem-resistant isolates in sewage. Subsequently, we evaluated the drug susceptibility, resistance genes, virulence genes, outer pore membrane protein-related genes (OmpK35 & OmpK 36), multi-locus sequence typing and replicons, biofilm formation capabilities, and resistance to chlorine-containing disinfectants among KP isolates. Identification of drug sensitivity, multiple resistance profiles were observed including 77 (82.80%) multidrug resistant (MDR), 16 (17.20%) extensive drug resistant (XDR). Some antibiotic resistance genes were detected, the most prevalent carbapenemase gene was blaKPC, and 16 resistance genes were associated with other antibiotics. In addition, 3 (3.23%) CRKP isolates demonstrated loss of OmpK-35 and 2 (2.15%) demonstrated loss of OmpK-36. In the detection of multi-locus sequence typing (MLST), 11 ST11 isolates carried virulence genes. The most common replicon type was IncFII. Biofilm-forming capabilities were demonstrated by 68.8% of the isolates, all of which were resistant to chlorine-containing disinfectants. The results of the study showed that antibiotic-resistant isolates, especially CRKP, could resist disinfectants in hospital wastewater, and improper treatment of hospital wastewater may lead to the spread of drug-resistant bacteria and their genes. Thus, these bacteria must be eliminated before being discharged into the municipal sewage system.</div
Distribution of 121 carbapenem-resistant isolates.
Distribution of 121 carbapenem-resistant isolates.</p