3 research outputs found

    PL-PatchSurfer2: Improved Local Surface Matching-Based Virtual Screening Method That Is Tolerant to Target and Ligand Structure Variation

    No full text
    Virtual screening has become an indispensable procedure in drug discovery. Virtual screening methods can be classified into two categories: ligand-based and structure-based. While the former have advantages, including being quick to compute, in general they are relatively weak at discovering novel active compounds because they use known actives as references. On the other hand, structure-based methods have higher potential to find novel compounds because they directly predict the binding affinity of a ligand in a target binding pocket, albeit with substantially lower speed than ligand-based methods. Here we report a novel structure-based virtual screening method, PL-PatchSurfer2. In PL-PatchSurfer2, protein and ligand surfaces are represented by a set of overlapping local patches, each of which is represented by three-dimensional Zernike descriptors (3DZDs). By means of 3DZDs, the shapes and physicochemical complementarities of local surface regions of a pocket surface and a ligand molecule can be concisely and effectively computed. Compared with the previous version of the program, the performance of PL-PatchSurfer2 is substantially improved by the addition of two more features, atom-based hydrophobicity and hydrogen-bond acceptors and donors. Benchmark studies showed that PL-PatchSurfer2 performed better than or comparable to popular existing methods. Particularly, PL-PatchSurfer2 significantly outperformed existing methods when apo-form or template-based protein models were used for queries. The computational time of PL-PatchSurfer2 is about 20 times shorter than those of conventional structure-based methods. The PL-PatchSurfer2 program is available at http://www.kiharalab.org/plps2/

    Knowledge-Based Strategy to Improve Ligand Pose Prediction Accuracy for Lead Optimization

    No full text
    Accurately predicting how a small molecule binds to its target protein is an essential requirement for structure-based drug design (SBDD) efforts. In structurally enabled medicinal chemistry programs, binding pose prediction is often applied to ligands after a related compound’s crystal structure bound to the target protein has been solved. In this article, we present an automated pose prediction protocol that makes extensive use of existing X-ray ligand information. It uses spatial restraints during docking based on maximum common substructure (MCS) overlap between candidate molecule and existing X-ray coordinates of the related compound. For a validation data set of 8784 docking runs, our protocol’s pose prediction accuracy (80–82%) is almost two times higher than that of one unbiased docking method software (43%). To demonstrate the utility of this protocol in a project setting, we show its application in a chronological manner for a number of internal drug discovery efforts. The accuracy and applicability of this algorithm (>70% of cases) to medicinal chemistry efforts make this the approach of choice for pose prediction in lead optimization programs

    Selectivity Data: Assessment, Predictions, Concordance, and Implications

    No full text
    Could high-quality in silico predictions in drug discovery eventually replace part or most of experimental testing? To evaluate the agreement of selectivity data from different experimental or predictive sources, we introduce the new metric concordance minimum significant ratio (cMSR). Empowered by cMSR, we find the overall level of agreement between predicted and experimental data to be comparable to that found between experimental results from different sources. However, for molecules that are either highly selective or potent, the concordance between different experimental sources is significantly higher than the concordance between experimental and predicted values. We also show that computational models built from one data set are less predictive for other data sources and highlight the importance of bias correction for assessing selectivity data. Finally, we show that small-molecule target space relationships derived from different data sources and predictive models share overall similarity but can significantly differ in details
    corecore