10 research outputs found
X-Raying the Dark Side of Venus - Scatter from Venus Magnetotail?
This work analyzes the X-ray, EUV and UV emission apparently coming from the
Earth-facing (dark) side of Venus as observed with Hinode/XRT and SDO/AIA
during a transit across the solar disk occurred in 2012. We have measured
significant X-Ray, EUV and UV flux from Venus dark side. As a check we have
also analyzed a Mercury transit across the solar disk, observed with Hinode/XRT
in 2006. We have used the latest version of the Hinode/XRT Point Spread
Function (PSF) to deconvolve Venus and Mercury X-ray images, in order to remove
possible instrumental scattering. Even after deconvolution, the flux from Venus
shadow remains significant while in the case of Mercury it becomes negligible.
Since stray-light contamination affects the XRT Ti-poly filter data from the
Venus transit in 2012, we performed the same analysis with XRT Al-mesh filter
data, which is not affected by the light leak. Even the Al-mesh filter data
show residual flux. We have also found significant EUV (304 A, 193 A, 335 A)
and UV (1700 A) flux in Venus shadow, as measured with SDO/AIA. The EUV
emission from Venus dark side is reduced when appropriate deconvolution methods
are applied; the emission remains significant, however. The light curves of the
average flux of the shadow in the X-ray, EUV, and UV bands appear different as
Venus crosses the solar disk, but in any of them the flux is, at any time,
approximately proportional to the average flux in a ring surrounding Venus, and
therefore proportional to the average flux of the solar regions around Venus
obscuring disk line of sight. The proportionality factor depends on the band.
This phenomenon has no clear origin; we suggest it may be due to scatter
occurring in the very long magnetotail of Venus.Comment: This paper has been accepted in The Astrophysical Journa
Untwisting Jets Related to Magnetic Flux Cancellation
The rotational motion of solar jets is believed to be a signature of the untwisting process resulting from magnetic reconnection, which takes place between twisted closed magnetic loops (i.e., magnetic flux ropes) and open magnetic field lines. The identification of the pre-existing flux rope, and the relationship between the twist contained in the rope and the number of turns the jet experiences, are then vital in understanding the jet-triggering mechanism. In this paper, we will perform a detailed analysis of imaging, spectral, and magnetic field observations of four homologous jets, among which the fourth one releases a twist angle of 2.6π. Nonlinear force-free field extrapolation of the photospheric vector magnetic field before the jet eruption presents a magnetic configuration with a null point between twisted and open fields—a configuration highly in favor of the eruption of solar jets. The fact that the jet rotates in the opposite sense of handness to the twist contained in the pre-eruption photospheric magnetic field confirms the unwinding of the twist by the jet's rotational motion. The temporal relationship between jets' occurrence and the total negative flux at their source region, together with the enhanced magnetic submergence term of the photospheric Poynting flux, shows that these jets are highly associated with local magnetic flux cancellation