39 research outputs found

    Image_1_A Cross-Tissue Transcriptome-Wide Association Study Identifies Novel Susceptibility Genes for Juvenile Idiopathic Arthritis in Asia and Europe.jpeg

    No full text
    BackgroundJuvenile idiopathic arthritis (JIA) is the most common rheumatic disease in children, and its pathogenesis is still unclear. Genome-wide association studies (GWASs) of JIA have identified hundreds of risk factors, but few of them implicated specific biological mechanisms.MethodsA cross-tissue transcriptome-wide association study (TWAS) was performed with the functional summary-based imputation software (FUSION) tool based on GWAS summary datasets (898 JIA patients and 346,102 controls from BioBank Japan (BBJ)/FinnGen). The gene expression reference weights of skeletal muscle and the whole blood were obtained from the Genotype-Tissue Expression (GTExv8) project. JIA-related genes identified by TWAS findings genes were further compared with the differentially expressed genes (DEGs) identified by the mRNA expression profile of JIA from the Gene Expression Omnibus (GEO) database (accession number: GSE1402). Last, candidate genes were analyzed using functional enrichment and annotation analysis by Metascape to examine JIA-related gene sets.ResultsThe TWAS identified 535 significant genes with P TWAS = 4.21E-03, PDEG = 1.50E-04) and FRAT2 (PTWAS = 2.82E-02, PDEG = 1.43E-02). Pathway enrichment analysis of TWAS identified 183 pathways such as cytokine signaling in the immune system and cell adhesion molecules. By integrating the results of DEGs pathway and process enrichment analyses, 19 terms were identified such as positive regulation of T-cell activation.ConclusionBy conducting two populations TWAS, we identified a group of JIA-associated genes and pathways, which may provide novel clues to uncover the pathogenesis of JIA.</p

    Image1_Preclinical evaluation of the ROCK1 inhibitor, GSK269962A, in acute myeloid leukemia.PDF

    No full text
    Acute myeloid leukemia (AML) is an aggressive hematologic malignancy with high mortality that urgently requires new treatments. ROCK1 plays an essential role in regulating growth and survival in AML cells. In this study, we evaluated GSK269962A, a selective ROCK1 inhibitor, in preclinical models of AML. Compared with solid tumors, GSK269962A selectively inhibited cell growth and clonogenicity of AML cells. Furthermore, GSK269962A arrested AML cells in the G2 phase and induced apoptosis by regulating multiple cell cycle- and apoptosis-associated proteins. Strikingly, GSK269962A could eliminate leukemia cells from bone marrow, liver, and spleen in an animal model of AML and significantly prolong mouse survival. Mechanistically, GSK269962A could inhibit the growth of AML by blocking ROCK1/c-Raf/ERK signaling pathway. Notably, a correlation was found between the expression levels of ROCK1 protein and the sensitivity of GSK269962A in AML. These data highlight the potential role of ROCK1 as an attractive target for treating AML, as well as the potential of GSK269962A for use in clinical trials of AML.</p

    Table_1_A Cross-Tissue Transcriptome-Wide Association Study Identifies Novel Susceptibility Genes for Juvenile Idiopathic Arthritis in Asia and Europe.xlsx

    No full text
    BackgroundJuvenile idiopathic arthritis (JIA) is the most common rheumatic disease in children, and its pathogenesis is still unclear. Genome-wide association studies (GWASs) of JIA have identified hundreds of risk factors, but few of them implicated specific biological mechanisms.MethodsA cross-tissue transcriptome-wide association study (TWAS) was performed with the functional summary-based imputation software (FUSION) tool based on GWAS summary datasets (898 JIA patients and 346,102 controls from BioBank Japan (BBJ)/FinnGen). The gene expression reference weights of skeletal muscle and the whole blood were obtained from the Genotype-Tissue Expression (GTExv8) project. JIA-related genes identified by TWAS findings genes were further compared with the differentially expressed genes (DEGs) identified by the mRNA expression profile of JIA from the Gene Expression Omnibus (GEO) database (accession number: GSE1402). Last, candidate genes were analyzed using functional enrichment and annotation analysis by Metascape to examine JIA-related gene sets.ResultsThe TWAS identified 535 significant genes with P TWAS = 4.21E-03, PDEG = 1.50E-04) and FRAT2 (PTWAS = 2.82E-02, PDEG = 1.43E-02). Pathway enrichment analysis of TWAS identified 183 pathways such as cytokine signaling in the immune system and cell adhesion molecules. By integrating the results of DEGs pathway and process enrichment analyses, 19 terms were identified such as positive regulation of T-cell activation.ConclusionBy conducting two populations TWAS, we identified a group of JIA-associated genes and pathways, which may provide novel clues to uncover the pathogenesis of JIA.</p

    Data_Sheet_1_Mild Endoplasmic Reticulum Stress Protects Against Lipopolysaccharide-Induced Astrocytic Activation and Blood-Brain Barrier Hyperpermeability.PDF

    No full text
    <p>Recent research has revealed that uncontrolled chronic neuroinflammation is closely associated with diverse neurodegenerative diseases, by impairing blood-brain barrier (BBB) function and astrocytic reaction. Endoplasmic reticulum (ER) stress is conventionally linked to the loss of neuronal structure and function and should be widely attenuated. This notion has been questioned by recent experimental studies, which have shown that non-harmful levels of ER stress had numerous beneficial roles against neurodegeneration, including neuroprotection and inhibition of cytokine production. Here, we investigated the mild ER stress-based regulation of LPS-induced inflammatory responses in astrocytes. Primary astrocytes were exposed to tunicamycin (TM), a compound that activates ER stress, with or without the ER-stress inhibitor sodium 4-phenylbutyrate (4-PBA) before LPS treatment. Astrocytic activation, proinflammatory factor production, and the extent of ER stress were assessed. In addition, the effect of mild ER stress on astrocytes and BBB function was determined in vivo. Male Sprague-Dawley rats received intracerebroventricular injections of TM with or without intraperitoneal 4-PBA before LPS administration. The levels of astrocytic activation and BBB permeability were measured after treatment. Our results showed that lower doses of TM resulted in a mild ER-stress response without inducing cytotoxicity and tissue toxicity. Non-toxic ER-stress preconditioning ameliorated LPS-induced overactivation and inflammatory responses in astrocytes. Moreover, pre-exposure to non-lethal doses of TM improved LPS-induced BBB impairment and cognitive ability dysfunction in rats. However, 4-PBA, reversed the protective effect of TM preconditioning in vitro and in vivo. We conclude that mild ER stress (“preconditioning”) can alleviate LPS-induced astrocytic activation and BBB disruption. Our findings provide a better understanding for the regulatory role of ER stress in neuroinflammation and indicate that mild ER stress might have therapeutic value for the treatment of neurodegenerative diseases.</p

    Table_1_Low-dose vs. standard-dose alteplase for Chinese patients with acute ischemic stroke: A propensity score analysis.docx

    No full text
    Background and purposePrevious studies have stimulated debates on low-dose alteplase administration in acute ischemic stroke (AIS) among the Asian population. We sought to evaluate the safety and efficacy of low-dose alteplase in Chinese patients with AIS using a real-world registry.MethodsWe analyzed data from the Shanghai Stroke Service System. Patients receiving alteplase intravenous thrombolysis within 4.5 hours were included. These patients were divided into the low-dose alteplase group (0.55–0.65 mg/kg) and the standard-dose alteplase group (0.85–0.95 mg/kg). Baseline imbalances were adjusted by using the propensity score matching. The primary outcome was mortality or disability, which was defined as the modified Rankin scale (mRS) score ranging from 2 to 6 at discharge. The secondary outcomes were in-hospital mortality, symptomatic intracranial hemorrhage (sICH) and functional independence (mRS score 0–2).ResultsFrom January 2019 to December 2020, a total of 1,334 patients were enrolled and 368 (27.6%) were treated with low-dose alteplase. The median age of the patients was 71 years, and 38.8% were female. Our study showed that the low-dose group had significantly higher rates of death or disability (adjusted odds ratio (aOR) = 1.49, 95% confidence interval (CI) [1.12, 1.98]) and less functional independence (aOR = 0.71, 95%CI [0.52, 0.97]) than the standard-dose group. There was no significant difference in sICH or in-hospital mortality between the standard-dose and low-dose alteplase groups.ConclusionsLow-dose alteplase was related to a poor functional outcome without lowering the risk of sICH, compared with standard-dose alteplase for AIS patients in China.</p

    Additional file 2: Figure S2. of Histamine upregulates the expression of histamine receptors and increases the neuroprotective effect of astrocytes

    No full text
    The effects of HR antagonists on expression levels of the histamine H1, H2, and H3 receptor subtypes. The astrocytes were exposed to the H1R antagonist cetirizine (10 μM), the H2R antagonist ranitidine (10 μM), and the H3R antagonist carcinine (10 μM) for 24 h. The expression levels of the histamine H1, H2, and H3 receptor subtypes were examined by quantitative RT-PCR. The data are presented as the mean ± s.e.m. of three independent experiments. (TIFF 365 kb

    Additional file 3: Figure S3. of Histamine upregulates the expression of histamine receptors and increases the neuroprotective effect of astrocytes

    No full text
    The expression levels of the histamine H4 receptor subtype in primary microglia and astrocytes. The expression of H4 receptor subtype was detected via Western blotting using specific antibody. The blot is representative of three experiments. (TIFF 546 kb

    Additional file 1: Figure S1. of Histamine upregulates the expression of histamine receptors and increases the neuroprotective effect of astrocytes

    No full text
    The effects of histamine and HR antagonists on cell viability in primary astrocytes. (A) The astrocytes were exposed to different concentrations of histamine (0.001–1 μg/ml) for 24 h. (B) The astrocytes were exposed to the H1R antagonist cetirizine (10 μM), the H2R antagonist ranitidine (10 μM), and the H3R antagonist carcinine (10 μM) and/or histamine (0.1 μg/ml) for 24 h. Cell viability was determined using a colorimetric method. Each data point represents the mean ± s.e.m. of at least three separate experiments in which treatments were performed in quadruplicates. (TIFF 507 kb
    corecore