5 research outputs found

    DataSheet1_Machine Learning-Based Evaluation on Craniodentofacial Morphological Harmony of Patients After Orthodontic Treatment.docx

    No full text
    Objectives: Machine learning is increasingly being used in the medical field. Based on machine learning models, the present study aims to improve the prediction performance of craniodentofacial morphological harmony judgment after orthodontic treatment and to determine the most significant factors.Methods: A dataset of 180 subjects was randomly selected from a large sample of 3,706 finished orthodontic cases from six top orthodontic treatment centers around China. Thirteen algorithms were used to predict the value of the cephalometric morphological harmony score of each subject and to search for the optimal model. Based on the feature importance ranking and by removing features, the regression models of machine learning (including the Adaboost, ExtraTree, XGBoost, and linear regression models) were used to predict and compare the score of harmony for each subject from the dataset with cross validations. By analyzing the prediction values, the most optimal model and the most significant cephalometric characteristics were determined.Results: When nine features were included, the performance of the XGBoost regression model was MAE = 0.267, RMSE = 0.341, and Pearson correlation coefficient = 0.683, which indicated that the XGBoost regression model exhibited the best fitting and predicting performance for craniodentofacial morphological harmony judgment. Nine cephalometric features including L1/NB (inclination of the lower central incisors), ANB (sagittal position between the maxilla and mandible), LL-EP (distance from the point of the prominence of the lower lip to the aesthetic plane), SN/OP (inclination of the occlusal plane), SNB (sagittal position of the mandible in relation to the cranial base), U1/SN (inclination of the upper incisors to the cranial base), L1-NB (protrusion of the lower central incisors), Ns-Prn-Pos (nasal protrusion), and U1/L1 (relationship between the protrusions of the upper and lower central incisors) were revealed to significantly influence the judgment.Conclusion: The application of the XGBoost regression model enhanced the predictive ability regarding the craniodentofacial morphological harmony evaluation by experts after orthodontic treatment. Teeth position, teeth alignment, jaw position, and soft tissue morphology would be the most significant factors influencing the judgment. The methodology also provided guidance for the application of machine learning models to resolve medical problems characterized by limited sample size.</p

    DataSheet2_Machine Learning-Based Evaluation on Craniodentofacial Morphological Harmony of Patients After Orthodontic Treatment.docx

    No full text
    Objectives: Machine learning is increasingly being used in the medical field. Based on machine learning models, the present study aims to improve the prediction performance of craniodentofacial morphological harmony judgment after orthodontic treatment and to determine the most significant factors.Methods: A dataset of 180 subjects was randomly selected from a large sample of 3,706 finished orthodontic cases from six top orthodontic treatment centers around China. Thirteen algorithms were used to predict the value of the cephalometric morphological harmony score of each subject and to search for the optimal model. Based on the feature importance ranking and by removing features, the regression models of machine learning (including the Adaboost, ExtraTree, XGBoost, and linear regression models) were used to predict and compare the score of harmony for each subject from the dataset with cross validations. By analyzing the prediction values, the most optimal model and the most significant cephalometric characteristics were determined.Results: When nine features were included, the performance of the XGBoost regression model was MAE = 0.267, RMSE = 0.341, and Pearson correlation coefficient = 0.683, which indicated that the XGBoost regression model exhibited the best fitting and predicting performance for craniodentofacial morphological harmony judgment. Nine cephalometric features including L1/NB (inclination of the lower central incisors), ANB (sagittal position between the maxilla and mandible), LL-EP (distance from the point of the prominence of the lower lip to the aesthetic plane), SN/OP (inclination of the occlusal plane), SNB (sagittal position of the mandible in relation to the cranial base), U1/SN (inclination of the upper incisors to the cranial base), L1-NB (protrusion of the lower central incisors), Ns-Prn-Pos (nasal protrusion), and U1/L1 (relationship between the protrusions of the upper and lower central incisors) were revealed to significantly influence the judgment.Conclusion: The application of the XGBoost regression model enhanced the predictive ability regarding the craniodentofacial morphological harmony evaluation by experts after orthodontic treatment. Teeth position, teeth alignment, jaw position, and soft tissue morphology would be the most significant factors influencing the judgment. The methodology also provided guidance for the application of machine learning models to resolve medical problems characterized by limited sample size.</p

    Releasing network isolation problem in group-based industrial wireless sensor networks

    No full text
    In this paper, we propose a cross-layer optimization scheme named Adjusting the Transmission Radius (ATR), which is based on the Energy Consumed uniformly Connected K-Neighborhood (EC-CKN) sleep scheduling algorithm in wireless sensor networks (WSNs). In particular, we discovered two important problems, namely, the death acceleration problem and the network isolation problem, in EC-CKN-based WSNs. Furthermore, we solve these two problems in ATR, which creates sleeping opportunities for the nodes that cannot get a chance to sleep in the EC-CKN algorithm. Simulation and experimental results show that the network lifetime of ATR-Connected-K-Neighborhood-based WSNs increases by 19%, on average, and the maximum increment is 41%. In addition, four important insights were discovered through this research work and presented in this paper.</p

    The driver’s instantaneous situation awareness when the alarm rings during the take-over of vehicle control in automated driving

    No full text
    The driver’s instantaneous situation awareness in the process of take-over of vehicle control in automated driving has not yet been thoroughly investigated. The proposed research can provide a better understanding of the driver’s perceived characteristics and identify the most urgent information requirements of the on-site scenario when the driver’s eye sight returns from other distractors to the driving scene. We conducted an experiment in simulated automated driving to study the participants’ ability of instantaneous hazard perception and judgment. The scene pictures, which were displayed in millisecond time, were used to imitate the situations that drivers would see when the distracted drivers returned their gaze from the distractive sources to the road in the simulated automated driving. The results show that the driving state, scene representation time and hazard levels affect the instantaneous situation awareness of drivers. In addition, the scene perception accuracy of the group who played games during automated driving is much lower than that of the group that chatted with the copilot. The longer picture-showing duration decreases the accuracy of hazard identification, whereas the shorter picture-showing duration increases the accuracy of hazard perception and the hazard rating score. In conclusion, distraction reduces the accuracy of the instantaneous scene perception of drivers, and drivers behave more cautiously in decision making when the driving situations are more hazardous. This study provides a good theoretical basis for the design of hazard warning information for automated driving.</p
    corecore