569 research outputs found
Effects of Shell on Bore center Annular Shaped Charges Formation and Penetrating into Steel Targets
Annular shaped charge can efficiently create large penetration diameter, which can solve the problem of small penetration diameter of a traditional shaped charge, and thus meeting the requirements of large penetration diameter in some specific situations. In this paper, the influence of five kinds shell structures, i.e. no shell, aluminum shell with thickness of 2.0 mm and steel shell with thickness of 2.0 mm, 3.0 mm and 4.0 mm, on bore-center annular shaped charges (BCASCs) formation and penetrating steel targets was investigated by numerical simulations and experiments. The numerical simulation results are in good agreement with the experimental results. The results showed that, from no shell to aluminum shell of 2.0 mm and then to steel shell of 2.0 mm, 3.0 mm and 4.0 mm for BCASCs, the diameter and radial velocity of projectile head decrease, the axial velocity of BCASC projectiles increases gradually, the penetration diameter of the targets decreases, and the penetration depth increases. The penetration diameter caused by the BCASC with no shell is the largest, being 116.0 mm (1.16D), D is the charge diameter. The penetration depth caused by the BCASC with steel shell of 4.0 mm thickness is the deepest, being 76.4 mm (0.76D)
Recommended from our members
Fertilizer application alters cadmium and selenium bioavailability in soil-rice system with high geological background levels
The co-occurrence of cadmium (Cd) pollution and selenium (Se) deficiency commonly exists in global soils, especially in China. As a result, there is great interest in developing practical agronomic strategies to simultaneously achieve Cd remediation and Se mobilization in paddy soils, thereby enhancing food quality/safety. To this end, we conducted a field-plot trial on soils having high geological background levels of Cd (0.67 mg kg-1) and Se (0.50 mg kg-1). We explored 12 contrasting fertilizers (urea, potassium sulfate (K2SO4), calcium-magnesium-phosphate (CMP)), amendments (manure and biochar) and their combinations on Cd/Se bioavailability. Soil pH, total organic carbon (TOC), soil available Cd/Se, Cd/Se fractions and Cd/Se accumulation in different rice components were determined. No significant differences existed in mean grain yield among treatments. Results showed that application of urea and K2SO4 decreased soil pH, whereas the CMP fertilizer and biochar treatments increased soil pH. There were no significant changes in TOC concentrations. Three treatments (CMP, manure, biochar) significantly decreased soil available Cd, whereas no treatment affected soil available Se at the maturity stage. Four treatments (CMP, manure, biochar and manure+urea+CMP+K2SO4) achieved our dual goal of Cd reduction and Se enrichment in rice grain. Structural equation modeling (SEM) demonstrated that soil available Cd and root Cd were negatively affected by pH and organic matter (OM), whereas soil available Se was positively affected by pH. Moreover, redundancy analysis (RDA) showed strong positive correlations between soil available Cd, exchangeable Cd and reducible Cd with grain Cd concentration, as well as between pH and soil available Se with grain Se concentration. Further, there was a strong negative correlation between residual Cd/Se (non-available fraction) and grain Cd/Se concentrations. Overall, this study identified the primary factors affecting Cd/Se bioavailability, thereby providing new guidance for achieving safe production of Se-enriched rice through fertilizer/amendment management of Cd-enriched soils
BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis
Plant steroid hormones, brassinosteroids (BRs), are perceived by the plasma membrane-localized leucine-rich-repeat-receptor kinase BRI1. Based on sequence similarity, we have identified three members of the BRI1 family, named BRL1, BRL2 and BRL3. BRL1 and BRL3, but not BRL2, encode functional BR receptors that bind brassinolide, the most active BR, with high affinity. In agreement, only BRL1 and BRL3 can rescue bri1 mutants when expressed under the control of the BRI1 promoter. While BRI1 is ubiquitously expressed in growing cells, the expression of BRL1 and BRL3 is restricted to non-overlapping subsets of vascular cells. Loss-of-function of brl1 causes abnormal phloem:xylem differentiation ratios and enhances the vascular defects of a weak bri1 mutant. bri1 brl1 brl3 triple mutants enhance bri1 dwarfism and also exhibit abnormal vascular differentiation. Thus, Arabidopsis contains a small number of BR receptors that have specific functions in cell growth and vascular differentiation.Fil: Caño Delgado, Ana. Salk Institute. Plant Biology Laboratory; Estados Unidos. Howard Hughes Medical Institute; Estados UnidosFil: Yin, Yanhai. Howard Hughes Medical Institute; Estados Unidos. Salk Institute. Plant Biology Laboratory; Estados UnidosFil: Yu, Cong. University of Michigan; Estados UnidosFil: Vafeados, Dionne. Howard Hughes Medical Institute; Estados Unidos. Salk Institute. Plant Biology Laboratory; Estados UnidosFil: Mora Garcia, Santiago. Howard Hughes Medical Institute; Estados Unidos. Salk Institute. Plant Biology Laboratory; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Cheng, Jin Chen. University of Michigan; Estados UnidosFil: Nam, Kyoung Hee. University of Michigan; Estados UnidosFil: Li, Jianming. University of Michigan; Estados UnidosFil: Chory, Joanne. Salk Institute. Plant Biology Laboratory; Estados Unidos. Howard Hughes Medical Institute; Estados Unido
Replication of an Autonomous Human Parvovirus in Non-dividing Human Airway Epithelium Is Facilitated through the DNA Damage and Repair Pathways
Human bocavirus 1 (HBoV1) belongs to the genus Bocaparvovirus of the Parvoviridae family, and is an emerging human pathogenic respiratory virus. In vitro, HBoV1 infects well-differentiated/polarized primary human airway epithelium (HAE) cultured at an air-liquid interface (HAE-ALI). Although it is well known that autonomous parvovirus replication depends on the S phase of the host cells, we demonstrate here that the HBoV1 genome amplifies efficiently in mitotically quiescent airway epithelial cells of HAE-ALI cultures. Analysis of HBoV1 DNA in infected HAE-ALI revealed that HBoV1 amplifies its ssDNA genome following a typical parvovirus rolling-hairpin DNA replication mechanism. Notably, HBoV1 infection of HAE-ALI initiates a DNA damage response (DDR) with activation of all three phosphatidylinositol 3-kinase–related kinases (PI3KKs). We found that the activation of the three PI3KKs is required for HBoV1 genome amplification; and, more importantly, we identified that two Y-family DNA polymerases, Pol η and Pol κ, are involved in HBoV1 genome amplification. Overall, we have provided an example of de novo DNA synthesis (genome amplification) of an autonomous parvovirus in non-dividing cells, which is dependent on the cellular DNA damage and repair pathways
PREVALENCE OF AVIAN CHLAMYDOPHILA PSITTACI IN CHINA
Abstract Examinations were carried out in 46 intensive farms in northern China to investigate avian Chlamydophila psittaci. Five hundred and twenty-five avian sera were selected for examining antibodies to C. psittaci by ELISA. One hundred and fifty-five clinical samples from throat swabs and oviduct tissues were tested for the presence of chlamydial antigen using IDEIA TM PCE chlamydia dual amplification immunoassay, and 60 samples were tested by ompA gene-based PCR. C. psittaci antibodies were detected in 387 (77.8%) out of 525 serum samples, with seroprevalences ranging from 50% to 100%. Among the tested samples, 98/150 (65.3%) in broilers, 173/210 (82.3%) in ducks, and 116/165 (70.3%) in laying hens were detected to be positive, respectively. Using PCE-ELISA test kits, in 91 out of 155 clinical samples the presence of antigen was confirmed, while 64 samples were negative. Forty-three PCR's were tested as positive out of 60 samples, while 17 samples were confirmed to be negative. Both higher positive antibodies and the presence of antigens were found in avian flocks associated with typical clinical signs suggestive of chlamydiosis. This study showed a severe prevalence of C. psittaci among different species of domestic birds in China
Minicircle HBV cccDNA with a Gaussia luciferase reporter for investigating HBV cccDNA biology and developing cccDNA-targeting drugs
Chronic Hepatitis B Virus (HBV) infection is generally not curable with current anti-viral drugs. Virus rebounds after stopping treatment from the stable HBV covalently-closed-circular DNA (cccDNA). The development of drugs that directly target cccDNA is hampered by the lack of robust HBV cccDNA models. We report here a novel HBV cccDNA technology that will meet the need. We engineered a minicircle HBV cccDNA with a Gaussia Luciferase reporter (mcHBV-GLuc cccDNA), which serves as a surrogate to measure cccDNA activity. The mcHBV-GLuc cccDNA was easily produced in bacteria, and it formed minichromosomes as HBV cccDNA episome DNA does when it was transfected into human hepatocytes. Compared to non-HBV minicircle plasmids, mcHBV-GLuc cccDNA showed persistent HBV-GLuc activity and HBx-dependent gene expression. Importantly, the mcHBV-GLuc cccDNA showed resistance to interferons (IFN) treatment, indicating its unique similarity to HBV cccDNA that is usually resistant to long-term IFN treatment in chronic HBV patients. Most importantly, GLuc illuminates cccDNA as a surrogate of cccDNA activity, providing a very sensitive and quick method to detect trace amount of cccDNA. The mcHBV-GLuc cccDNA model is independent of HBV infection, and will be valuable for investigating HBV cccDNA biology and for developing cccDNA-targeting drugs
- …