3 research outputs found

    Can Silica Particles Reduce Air Pollution by Facilitating the Reactions of Aliphatic Aldehyde and NO<sub>2</sub>?

    No full text
    This study investigated the heterogeneous atmospheric reactions of acetaldehyde, propanal, and butanal with NO<sub>2</sub> onto silica (SiO<sub>2</sub>) clusters using a theoretical approach. By analyzing spectral features and adsorption parameters, the formation of hydrogen bonds and negative adsorption energies provide evidence that an efficient spontaneous uptake of aliphatic aldehydes onto SiO<sub>2</sub> could occur. The atmospheric reaction mechanisms show that when aldehydes and NO<sub>2</sub> react on the surface model, the H atom abstraction reaction from the aldehydic molecule by NO<sub>2</sub> is an exclusive channel, forming nitrous acid and acyl radicals. This study included kinetics exploring the reaction of aldehydes with NO<sub>2</sub> using a canonical variational transition state theory. The reaction rate constants are increased in the presence of SiO<sub>2</sub> between the temperatures 217 and 298 K. This may explain how aldehydes can temporarily stay on mineral particles without chemical reactions. The results suggest that silica can depress the rate at which the studied aldehydes react with NO<sub>2</sub> and possibly reduce air pollution generated by these atmospheric reactions

    Synthesis of Carbon Nanotube–Anatase TiO<sub>2</sub> Sub-micrometer-sized Sphere Composite Photocatalyst for Synergistic Degradation of Gaseous Styrene

    No full text
    The carbon nanotube (CNT)–sub-micrometer-sized anatase TiO<sub>2</sub> sphere composite photocatalysts were synthesized by a facile one-step hydrothermal method using titanium tetrafluoride as titanium source and CNTs as structure regulator. Various technologies including X-ray diffraction, UV–visible absorption spectra, N<sub>2</sub> adsorption–desorption, scanning electron microscopy, and transmission electron microscopy were employed to characterize the structure properties of the prepared composite photocatalysts. The results indicated that the composite photocatalysts consisted of CNTs wrapping around the sub-micrometer-sized anatase TiO<sub>2</sub> spheres with controllable crystal facets and that the aggregated particles with average diameter ranged from 200 to 600 nm. The fabricated composite photocatalysts were used to degrade gaseous styrene in this work. As expected, a synergistic effect that remarkably enhancing the photocatalytic degradation efficiency of gaseous styrene by the prepared composite photocatalysts was observed in comparison with that the degradation efficiency using pure anatase TiO<sub>2</sub> and the adsorption of CNTs. Similar results were also confirmed in the decolorization of liquid methyl orange. Further investigation demonstrated that the synergistic effect in the photocatalytic activity was related to the structure of the sub-micrometer-sized anatase TiO<sub>2</sub> spheres and the significant roles of CNTs in the composite photocatalysts. By controlling the content of CNTs, the content of TiO<sub>2</sub> or the temperature during the hydrothermal synthesis process, anatase TiO<sub>2</sub> spheres with controllable crystallite size and dominant crystal facets such as {001}, {101}, or polycrystalline could be obtained, which was beneficial for the increase in the synergistic effect and further enhancement of the photocatalytic efficiencies

    Synthesis and Characterization of Novel Plasmonic Ag/AgX-CNTs (X = Cl, Br, I) Nanocomposite Photocatalysts and Synergetic Degradation of Organic Pollutant under Visible Light

    No full text
    A series of novel well-defined Ag/AgX (X = Cl, Br, I) loaded carbon nanotubes (CNTs) composite photocatalysts (Ag/AgX-CNTs) were fabricated for the first time via a facile ultrasonic assistant deposition–precipitation method at the room temperature (25 ± 1 °C). X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption–desorption analysis, scanning electron microscopy, and ultraviolet–visible light absorption spectra analysis were used to characterize the structure, morphology, and optical properties of the as-prepared photocatalysts. Results confirmed the existence of the direct interfacial contact between Ag/AgX nanoparticles and CNTs, and Ag/AgX-CNTs nanocomposites exhibit superior absorbance in the visible light (VL) region owing to the surface plasmon resonance (SPR) of Ag nanoparticles. The fabricated composite photocatalysts were employed to remove 2,4,6-tribromophenol (TBP) in aqueous phase. A remarkably enhanced VL photocatalytic degradation efficiency of Ag/AgX-CNTs nanocomposites was observed when compared to that of pure AgX or CNTs. The photocatalytic activity enhancement of Ag/AgX-CNTs was due to the effective electron transfer from photoexcited AgX and plasmon-excited Ag(0) nanoparticles to CNTs. This can effectively decrease the recombination of electron–hole pairs, lead to a prolonged lifetime of the photoholes that promotes the degradation efficiency
    corecore