13,275 research outputs found
Locating influential nodes via dynamics-sensitive centrality
With great theoretical and practical significance, locating influential nodes
of complex networks is a promising issues. In this paper, we propose a
dynamics-sensitive (DS) centrality that integrates topological features and
dynamical properties. The DS centrality can be directly applied in locating
influential spreaders. According to the empirical results on four real networks
for both susceptible-infected-recovered (SIR) and susceptible-infected (SI)
spreading models, the DS centrality is much more accurate than degree,
-shell index and eigenvector centrality.Comment: 6 pages, 1 table and 2 figure
Digital image processing for automatic lithological mapping using Landsat TM imagery
Imperial Users onl
Hydrodynamics of self-alignment interactions with precession and derivation of the Landau-Lifschitz-Gilbert equation
We consider a kinetic model of self-propelled particles with alignment
interaction and with precession about the alignment direction. We derive a
hydrodynamic system for the local density and velocity orientation of the
particles. The system consists of the conservative equation for the local
density and a non-conservative equation for the orientation. First, we assume
that the alignment interaction is purely local and derive a first order system.
However, we show that this system may lose its hyperbolicity. Under the
assumption of weakly non-local interaction, we derive diffusive corrections to
the first order system which lead to the combination of a heat flow of the
harmonic map and Landau-Lifschitz-Gilbert dynamics. In the particular case of
zero self-propelling speed, the resulting model reduces to the phenomenological
Landau-Lifschitz-Gilbert equations. Therefore the present theory provides a
kinetic formulation of classical micromagnetization models and spin dynamics
Analysis of an asymptotic preserving scheme for linear kinetic equations in the diffusion limit
We present a mathematical analysis of the asymptotic preserving scheme
proposed in [M. Lemou and L. Mieussens, SIAM J. Sci. Comput., 31, pp. 334-368,
2008] for linear transport equations in kinetic and diffusive regimes. We prove
that the scheme is uniformly stable and accurate with respect to the mean free
path of the particles. This property is satisfied under an explicitly given CFL
condition. This condition tends to a parabolic CFL condition for small mean
free paths, and is close to a convection CFL condition for large mean free
paths. Ou r analysis is based on very simple energy estimates
- …