92 research outputs found

    Identification of microRNAs Actively Involved in Fatty Acid Biosynthesis in Developing Brassica napus Seeds Using High-Throughput Sequencing

    Get PDF
    Seed development has a critical role during the spermatophyte life cycle. In Brassica napus, a major oil crop, fatty acids are synthesized and stored in specific tissues during embryogenesis, and understanding the molecular mechanism underlying fatty acid biosynthesis during seed development is an important research goal. In this study, we constructed three small RNA libraries from early seeds at 14, 21 and 28 days after flowering (DAF) and used high-throughput sequencing to examine microRNA (miRNA) expression. A total of 85 known miRNAs from 30 families and 1,160 novel miRNAs were identified, of which 24, including 5 known and 19 novel miRNAs, were found to be involved in fatty acid biosynthesis. bna-miR156b, bna-miR156c, bna-miR156g, novel_mir_1706, novel_mir_1407, novel_mir_173, and novel_mir_104 were significantly down-regulated at 21 DAF and 28 DAF, whereas bna-miR159, novel_mir_1081, novel_mir_19 and novel_mir_555 were significantly up-regulated. In addition, we found that some miRNAs regulate functional genes that are directly involved in fatty acid biosynthesis and that other miRNAs regulate the process of fatty acid biosynthesis by acting on a large number of transcription factors. The miRNAs and their corresponding predicted targets were partially validated by quantitative RT-PCR. Our data suggest that diverse and complex miRNAs are involved in the seed development process and that miRNAs play important roles in fatty acid biosynthesis during seed development

    Discovery of Stable and Selective Antibody Mimetics from Combinatorial Libraries of Polyvalent, Loop-Functionalized Peptoid Nanosheets.

    Get PDF
    The ability of antibodies to bind a wide variety of analytes with high specificity and high affinity makes them ideal candidates for therapeutic and diagnostic applications. However, the poor stability and high production cost of antibodies have prompted exploration of a variety of synthetic materials capable of specific molecular recognition. Unfortunately, it remains a fundamental challenge to create a chemically diverse population of protein-like, folded synthetic nanostructures with defined molecular conformations in water. Here we report the synthesis and screening of combinatorial libraries of sequence-defined peptoid polymers engineered to fold into ordered, supramolecular nanosheets displaying a high spatial density of diverse, conformationally constrained peptoid loops on their surface. These polyvalent, loop-functionalized nanosheets were screened using a homogeneous Förster resonance energy transfer (FRET) assay for binding to a variety of protein targets. Peptoid sequences were identified that bound to the heptameric protein, anthrax protective antigen, with high avidity and selectivity. These nanosheets were shown to be resistant to proteolytic degradation, and the binding was shown to be dependent on the loop display density. This work demonstrates that key aspects of antibody structure and function-the creation of multivalent, combinatorial chemical diversity within a well-defined folded structure-can be realized with completely synthetic materials. This approach enables the rapid discovery of biomimetic affinity reagents that combine the durability of synthetic materials with the specificity of biomolecular materials

    Application of Recursive Subspace Method in Vehicle Lateral Dynamics Model Identification

    Get PDF
    Modeling of vehicle behavior based on the identification method has received a renewed attention in recent years. In order to improve the linear time-invariant vehicle identification model, a more general identifiable vehicle model structure is proposed, in which time-varying characteristics of vehicle speed and cornering stiffness are taken into consideration. To identify the proposed linear time-varying vehicle model, a well-established data-driven method, named recursive optimized version of predictor-based subspace identification, is introduced. Before vehicle model identification, the influences of four parameters in the subspace algorithm are studied based on pulse input road test. And then a set of practical optimal parameters are chosen and used for the vehicle model identification. Through a series of standard road tests under different maneuvers, the linear time-varying vehicle model can be identified in real-time. It is demonstrated by comparison that the predicted outputs of the proposed vehicle model are much closer to the real vehicle outputs and the model has a wider range of application.</jats:p

    Catching COVID: Engineering Peptide-Modified Surface-Enhanced Raman Spectroscopy Sensors for SARS-CoV‑2

    Get PDF
    COVID-19 remains an ongoing issue across the globe, highlighting the need for a rapid, selective, and accurate sensor for SARS-CoV-2 and its emerging variants. The chemical specificity and signal amplification of surface-enhanced Raman spectroscopy (SERS) could be advantageous for developing a quantitative assay for SARS-CoV-2 with improved speed and accuracy over current testing methods. Here, we have tackled the challenges associated with SERS detection of viruses. As viruses are large, multicomponent species, they can yield different SERS signals, but also other abundant biomolecules present in the sample can generate undesired signals. To improve selectivity in complex biological environments, we have employed peptides as capture probes for viral proteins and developed an angiotensin-converting enzyme 2 (ACE2) mimetic peptide-based SERS sensor for SARS-CoV-2. The unique vibrational signature of the spike protein bound to the peptide-modified surface is identified and used to construct a multivariate calibration model for quantification. The sensor demonstrates a 300 nM limit of detection and high selectivity in the presence of excess bovine serum albumin. This work provides the basis for designing a SERS-based assay for the detection of SARS-CoV-2 as well as engineering SERS biosensors for other viruses in the future

    Study on water hammer protection of the siphon breaking structure in the water supply system

    No full text
    Abstract An appropriate water hammer protective scheme is a significant concern in the operation of water supply projects. According to the special terrain in the water supply project, which forms a siphon breaking structure at the end of the pipeline, three protective schemes were proposed and compared: single vacuum breaking valve (VBV) scheme, VBV and air valve scheme, and VBV and one-way surge tower scheme. Based on the control standards of pipe pressure, the three protective schemes were assessed in terms of suppressing the negative pressure caused by a pump trip accident. The results show that the siphon breaking structure with the VBV can achieve good effect protection only in a limited range of pipelines. In the VBV and air valve scheme, the pressure oscillations were obviously caused by repeated inlet and exhaust of the air valves. To avoid supplementing too much gas in the pipe by air valves, which will result in a gas column bridging phenomenon, the VBV and one-way surge tower scheme is proposed and can better meet the requirement of the pressure control standard.</jats:p

    Synthesis of 2-Substituted Benzimidazoles Catalyzed by Cyclic Phosphoric Acid

    No full text

    Effects of Different Surface Heat Transfer Coefficients on Predicted Heating and Cooling Loads towards Sustainable Building Design

    No full text
    The transfer of surface heat between a building and the outdoor environment is the energy transfer channel and it is important for the energy efficiency of buildings. Early stage building design is a critical stage and it can directly determine the energy consumption by a building. Therefore, selecting appropriate surface heat transfer coefficients (SHTCs) is a key issue in building energy consumption prediction. In this study, EnergyPlus was employed to investigate the building load in Chinese cities with different SHTCs: (1) constant SHTCs based on national standards; and (2) dynamically changing SHTCs based on the Thermal Analysis Research Program (TARP). Based on investigations of the hourly load, daily cumulative load in a typical day, and annual cumulative load with different SHTCs, corrections for the annual cumulative load were obtained according to the relative deviations between the results produced with the TARP model and traditional SHTCs. The greatest relative deviations were 67.5% and 25.3% for the building shape factor φ = 0.49 and 0.29 in Lhasa. The relative deviations were 13.3% and 12.0% for φ = 0.49 in Xi’an and Beijing, respectively. Corrections were not essential for other conditions because the relative deviations were lower than 5.0%. Considering the current characteristics of engineering calculations and the need to obtain more accurate design results, dynamically changing SHTCs should be applied. These correction factors can obtain more accurate results for the current building energy efficiency system with traditional SHTCs.</jats:p
    corecore