653 research outputs found

    Explainable Recommendation: Theory and Applications

    Full text link
    Although personalized recommendation has been investigated for decades, the wide adoption of Latent Factor Models (LFM) has made the explainability of recommendations a critical issue to both the research community and practical application of recommender systems. For example, in many practical systems the algorithm just provides a personalized item recommendation list to the users, without persuasive personalized explanation about why such an item is recommended while another is not. Unexplainable recommendations introduce negative effects to the trustworthiness of recommender systems, and thus affect the effectiveness of recommendation engines. In this work, we investigate explainable recommendation in aspects of data explainability, model explainability, and result explainability, and the main contributions are as follows: 1. Data Explainability: We propose Localized Matrix Factorization (LMF) framework based Bordered Block Diagonal Form (BBDF) matrices, and further applied this technique for parallelized matrix factorization. 2. Model Explainability: We propose Explicit Factor Models (EFM) based on phrase-level sentiment analysis, as well as dynamic user preference modeling based on time series analysis. In this work, we extract product features and user opinions towards different features from large-scale user textual reviews based on phrase-level sentiment analysis techniques, and introduce the EFM approach for explainable model learning and recommendation. 3. Economic Explainability: We propose the Total Surplus Maximization (TSM) framework for personalized recommendation, as well as the model specification in different types of online applications. Based on basic economic concepts, we provide the definitions of utility, cost, and surplus in the application scenario of Web services, and propose the general framework of web total surplus calculation and maximization.Comment: 169 pages, in Chinese, 3 main research chapter

    Uber die Antigensysteme der Blutkorperchen. III. Mitteilung : Uber die an Hand der Immunisierung von Hausenten und Huhnern zu beobachtende Gemeinschaftlichkeit der Rezeptoren des Saugetierblutes

    Get PDF
    In der vorangehenden Mitteilung wurde das Studium uber das Verhalten der Antistoffe, die bei der Immunisierung von Hausenten mit Menschenblut aller Gruppen, verschiedenen Tierblutkorperchen sowie Organen einiger Tierarten erzeugt werden und zum menschlichen Blut in einer Beziehung stehen, berichtet. In der vorliegenden Arbeit wird nun das Ergebnis der Untersuchungen mitgeteilt, die angestellt wurden, um zu sehen, wie sich die Immunkorper verhalten, die durch Vorbehandlung auch von Hausenten mit dem Blut und Organen der Saugetiere entstehen und dem Saugetierblut eigen sind, ohne mit dem Menschenblut in einem Zusammenhang zu stehen. Im Serum solcher Immunhausenten konnten, wie Asakawa und Mizutani bei ihren gleichartigen Versuchen mit Huhnern konstatiert hatten, Antikorper nachgewiesen werden, die mit verschiedenen Saugetierblutkorperchen zu reagieren vermogen, aber nicht mit dem Menschenblut. Die Antiseren wurden nun mit den verschiedenen Saugetierblutkorperchen behandelt und die Absorptionsfahigkeit solcher Saugetierblutarten den im Antiserum enthaltenen polyvalenten Antikorpern gegenuber wurde verglichen. Solche Untersuchungen wurden in dieser Arbeit im ganzen an etwa 13 Antiserumarten vorgenommen; namlich, an Immunseren gegen Kaninchen-, Ratten-, Rinder-, Schweine-, Hunde (I und II)-, Katzen-, Meerschweinchen-, Ziegen-, Hammel- und Pferdeblut sowie an Immunseren gegen Nieren von Pferd und Meerschweinchen. Die auf diese Weise ausgefuhrten Rezeptorenanalyse ergab, dass die dem Saugetierblut gemeinschaftlichen Antigene (und dementsprechend auch die dazu gehorigen Antikorper) im grossen und ganzen in zwei Systeme eingeteilt werden konnen und zwar wie folgt: 1. Das eine Antigen ist in den verschiedenen Blutkorperchen in der folgenden Reihenfolge enthalten: Kaninchen-Ratte-Rind-Schwein-Hund-Meerschweinchen-Katze-Ziege-Hammel-Pferd. 2. Das andere kommt dagegen in den verschiedenen Blutkorperchen in der folgenden Reihenfolge vor: Katze-Ziege-Hammel-Pferd...Hund (II)-Rind-Schwein-Kaninchen (Ratten- und Meerschweinchen

    Cloud graphs showing the distribution of sound power levels at various altitudes in the fan’s central section.

    No full text
    Cloud graphs showing the distribution of sound power levels at various altitudes in the fan’s central section.</p

    Fan noise spectrum.

    No full text
    In high-altitude areas, the air is thin and the atmospheric pressure is low, which can affect the performance of centrifugal fans and aerodynamic noise. In this paper, steady and unsteady simulations of a centrifugal fan flow field are performed at altitudes of 0, 1000, 2000, 3000, 4000, and 5000 m, and the Ffowcs Williams-Hawkings equation is used to predict the aerodynamic noise of the fan. The results indicate that the tonal and broadband noise generated by the fan decrease with increasing altitude, and the A-weighted sound pressure level of each frequency band of the fan decreases when the air volume is held fixed. The maximum sound power level Lwmax, sound pressure pulsation interval, and total noise sound pressure level Lp decrease linearly with increasing altitude. For every 1000 m increase in altitude, Lwmax and Lp decrease by 0.45 dB and 1.05 dB respectively. The fan noise characteristics, performance parameters, and human auditory perception are the main factors that affect the establishment of fan noise standards in high-altitude areas.</div

    Relationship between altitude and maximum sound power level.

    No full text
    Relationship between altitude and maximum sound power level.</p

    Arrangement of noise monitoring points.

    No full text
    In high-altitude areas, the air is thin and the atmospheric pressure is low, which can affect the performance of centrifugal fans and aerodynamic noise. In this paper, steady and unsteady simulations of a centrifugal fan flow field are performed at altitudes of 0, 1000, 2000, 3000, 4000, and 5000 m, and the Ffowcs Williams-Hawkings equation is used to predict the aerodynamic noise of the fan. The results indicate that the tonal and broadband noise generated by the fan decrease with increasing altitude, and the A-weighted sound pressure level of each frequency band of the fan decreases when the air volume is held fixed. The maximum sound power level Lwmax, sound pressure pulsation interval, and total noise sound pressure level Lp decrease linearly with increasing altitude. For every 1000 m increase in altitude, Lwmax and Lp decrease by 0.45 dB and 1.05 dB respectively. The fan noise characteristics, performance parameters, and human auditory perception are the main factors that affect the establishment of fan noise standards in high-altitude areas.</div

    The relationship between sound pressure and altitude.

    No full text
    The relationship between sound pressure and altitude.</p

    Total pressure cloud diagram of the fan.

    No full text
    In high-altitude areas, the air is thin and the atmospheric pressure is low, which can affect the performance of centrifugal fans and aerodynamic noise. In this paper, steady and unsteady simulations of a centrifugal fan flow field are performed at altitudes of 0, 1000, 2000, 3000, 4000, and 5000 m, and the Ffowcs Williams-Hawkings equation is used to predict the aerodynamic noise of the fan. The results indicate that the tonal and broadband noise generated by the fan decrease with increasing altitude, and the A-weighted sound pressure level of each frequency band of the fan decreases when the air volume is held fixed. The maximum sound power level Lwmax, sound pressure pulsation interval, and total noise sound pressure level Lp decrease linearly with increasing altitude. For every 1000 m increase in altitude, Lwmax and Lp decrease by 0.45 dB and 1.05 dB respectively. The fan noise characteristics, performance parameters, and human auditory perception are the main factors that affect the establishment of fan noise standards in high-altitude areas.</div

    Grid independent verification.

    No full text
    In high-altitude areas, the air is thin and the atmospheric pressure is low, which can affect the performance of centrifugal fans and aerodynamic noise. In this paper, steady and unsteady simulations of a centrifugal fan flow field are performed at altitudes of 0, 1000, 2000, 3000, 4000, and 5000 m, and the Ffowcs Williams-Hawkings equation is used to predict the aerodynamic noise of the fan. The results indicate that the tonal and broadband noise generated by the fan decrease with increasing altitude, and the A-weighted sound pressure level of each frequency band of the fan decreases when the air volume is held fixed. The maximum sound power level Lwmax, sound pressure pulsation interval, and total noise sound pressure level Lp decrease linearly with increasing altitude. For every 1000 m increase in altitude, Lwmax and Lp decrease by 0.45 dB and 1.05 dB respectively. The fan noise characteristics, performance parameters, and human auditory perception are the main factors that affect the establishment of fan noise standards in high-altitude areas.</div

    S1 Dataset -

    No full text
    In high-altitude areas, the air is thin and the atmospheric pressure is low, which can affect the performance of centrifugal fans and aerodynamic noise. In this paper, steady and unsteady simulations of a centrifugal fan flow field are performed at altitudes of 0, 1000, 2000, 3000, 4000, and 5000 m, and the Ffowcs Williams-Hawkings equation is used to predict the aerodynamic noise of the fan. The results indicate that the tonal and broadband noise generated by the fan decrease with increasing altitude, and the A-weighted sound pressure level of each frequency band of the fan decreases when the air volume is held fixed. The maximum sound power level Lwmax, sound pressure pulsation interval, and total noise sound pressure level Lp decrease linearly with increasing altitude. For every 1000 m increase in altitude, Lwmax and Lp decrease by 0.45 dB and 1.05 dB respectively. The fan noise characteristics, performance parameters, and human auditory perception are the main factors that affect the establishment of fan noise standards in high-altitude areas.</div
    corecore