33 research outputs found

    Additional file 2 of Identification of novel candidate biomarkers and immune infiltration in polycystic ovary syndrome

    No full text
    Additional file 2: Supplementary Table 1. Gene expression data from the Gene Expression Omnibus (GEO) database

    Additional file 1 of Identification of novel candidate biomarkers and immune infiltration in polycystic ovary syndrome

    No full text
    Additional file 1: Supplementary Figure 1. The differential expressions of AKAP5 (A) and APOH (B) in the test group. The ROC curves of AKAP5 (C) and APOH (D) in the test group. ROC, receiver operating characteristic; AKAP5, A-kinase anchoring protein 5; APOH, apolipoprotein H

    Additional file 4 of Identification of novel candidate biomarkers and immune infiltration in polycystic ovary syndrome

    No full text
    Additional file 4: Supplementary Table 3. The performance of HDDC3, SDC2, and their combination in predicting PCOS

    Table_3_Elevated Serum Leptin Levels as a Predictive Marker for Polycystic Ovary Syndrome.docx

    No full text
    BackgroundLeptin may have important implications in polycystic ovary syndrome (PCOS)-related metabolic disorders. However, the changes in serum leptin levels in patients with PCOS and its predictive value for PCOS remain obscure. We intend to analyze the association between leptin and PCOS in this study.Materials and MethodsThe study comprised 89 patients with PCOS and 139 individuals without PCOS. Each group was stratified as either normal- or hyper-fasting serum insulin (FSI), and lean or overweight/obese; and the patients were further categorized as normal- or hyper-androgenic. The validity of leptin toward the diagnosis of PCOS, or leptin combined with total testosterone, dehydroepiandrosterone sulfate (DHEAS), and free testosterone was estimated by receiver operating characteristic (ROC) curves, and correlations between paired variables was estimated by Spearman’s rank correlation coefficient. Associations between the clinical and metabolic variables and PCOS were analyzed via logistic regression.ResultsThe serum leptin levels of patients with PCOS were significantly higher than that of the control, and especially the PCOS in hyper-FSI, hyperandrogenimic and overweight/obese subgroups. The area under the ROC curve (AUC) of leptin was 74%, with cutoff value, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) 11.58 ng/mL, 77.5%, 62.6%, 57.0%, and 81.3%, respectively. Combined leptin and anti-Müllerian hormone (AMH) had the highest AUC (92.3%), excellent sensitivity (93.3%), moderate specificity (78.3%), PPV (73.5%) and NPV (94.8%). Serum leptin levels of the patients were correlated with the FSI, fasting plasma glucose (FPG), homeostasis model assessment of insulin resistance (HOMA-IR), body mass index (BMI), and total testosterone levels. Elevated serum leptin was associated with a high risk of PCOS [P = 0.015; OR (95% CI) 1.128 (1.024–1.244)].ConclusionSubstantially elevated serum leptin is significantly associated with PCOS. These findings warrant further investigations into the function of leptin in the pathogenesis of PCOS.</p

    Data_Sheet_1_Transcription Analysis of the Stress and Immune Response Genes to Temperature Stress in Ostrinia furnacalis.xlsx

    No full text
    Ostrinia furnacalis is one of the most important pests on maize. O. furnacalis larvae are frequently exposed to the temperature challenges such as high temperature in summer and cold temperature in winter in the natural environment. High and low temperature stress, like any abiotic stress, impairs the physiology and development of insects. Up to now, there is limited information about gene regulation and signaling pathways related to the high and cold stress response in O. furnacalis. High-throughput sequencing of transcriptome provides a new approach for detecting stress and immune response genes under high and low temperature stresses in O. furnacalis. In the present study, O. furnacalis larvae were treated with the temperature at 8 and 40°C, and the responses of O. furnacalis larvae to the temperature stress were investigated through RNA-sequencing and further confirmation. The results showed that immune responses were up-regulated in larvae by the cold stress at 8°C while some stress response genes, such as HSP family, GST-2, Bax inhibitor and P450, were significantly increased at 40°C. Furthermore, quantitative real time polymerase chain reaction were performed to quantify the expression levels of immune related genes, such as PGRP-LB, antimicrobial peptides, lysozyme, serine protease and stress response genes such as small HSPs and HSP90, and the expression levels of these genes were similar to the RNA-seq results. In addition, the iron storage protein Ferritin was found to be involved in the response to temperature stress, and the changes of total iron concentration in the hemolymph were, in general, consistent with the expression levels of Ferritin. Taken together, our results suggested that the stress response genes were involved in the defense against the heat stress at 40°C, and the immune responses triggered by cold stress might provide protection for larvae from cold stress at 8°C. More interestingly, our results showed that during the responses to temperature stress, the total iron concentration in hemolymph regulated by Ferritin increased, which might help O. furnacalis in surviving the low and high temperature stress.</p

    Table_2_Elevated Serum Leptin Levels as a Predictive Marker for Polycystic Ovary Syndrome.docx

    No full text
    BackgroundLeptin may have important implications in polycystic ovary syndrome (PCOS)-related metabolic disorders. However, the changes in serum leptin levels in patients with PCOS and its predictive value for PCOS remain obscure. We intend to analyze the association between leptin and PCOS in this study.Materials and MethodsThe study comprised 89 patients with PCOS and 139 individuals without PCOS. Each group was stratified as either normal- or hyper-fasting serum insulin (FSI), and lean or overweight/obese; and the patients were further categorized as normal- or hyper-androgenic. The validity of leptin toward the diagnosis of PCOS, or leptin combined with total testosterone, dehydroepiandrosterone sulfate (DHEAS), and free testosterone was estimated by receiver operating characteristic (ROC) curves, and correlations between paired variables was estimated by Spearman’s rank correlation coefficient. Associations between the clinical and metabolic variables and PCOS were analyzed via logistic regression.ResultsThe serum leptin levels of patients with PCOS were significantly higher than that of the control, and especially the PCOS in hyper-FSI, hyperandrogenimic and overweight/obese subgroups. The area under the ROC curve (AUC) of leptin was 74%, with cutoff value, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) 11.58 ng/mL, 77.5%, 62.6%, 57.0%, and 81.3%, respectively. Combined leptin and anti-Müllerian hormone (AMH) had the highest AUC (92.3%), excellent sensitivity (93.3%), moderate specificity (78.3%), PPV (73.5%) and NPV (94.8%). Serum leptin levels of the patients were correlated with the FSI, fasting plasma glucose (FPG), homeostasis model assessment of insulin resistance (HOMA-IR), body mass index (BMI), and total testosterone levels. Elevated serum leptin was associated with a high risk of PCOS [P = 0.015; OR (95% CI) 1.128 (1.024–1.244)].ConclusionSubstantially elevated serum leptin is significantly associated with PCOS. These findings warrant further investigations into the function of leptin in the pathogenesis of PCOS.</p

    Data_Sheet_5_Transcription Analysis of the Stress and Immune Response Genes to Temperature Stress in Ostrinia furnacalis.xls

    No full text
    Ostrinia furnacalis is one of the most important pests on maize. O. furnacalis larvae are frequently exposed to the temperature challenges such as high temperature in summer and cold temperature in winter in the natural environment. High and low temperature stress, like any abiotic stress, impairs the physiology and development of insects. Up to now, there is limited information about gene regulation and signaling pathways related to the high and cold stress response in O. furnacalis. High-throughput sequencing of transcriptome provides a new approach for detecting stress and immune response genes under high and low temperature stresses in O. furnacalis. In the present study, O. furnacalis larvae were treated with the temperature at 8 and 40°C, and the responses of O. furnacalis larvae to the temperature stress were investigated through RNA-sequencing and further confirmation. The results showed that immune responses were up-regulated in larvae by the cold stress at 8°C while some stress response genes, such as HSP family, GST-2, Bax inhibitor and P450, were significantly increased at 40°C. Furthermore, quantitative real time polymerase chain reaction were performed to quantify the expression levels of immune related genes, such as PGRP-LB, antimicrobial peptides, lysozyme, serine protease and stress response genes such as small HSPs and HSP90, and the expression levels of these genes were similar to the RNA-seq results. In addition, the iron storage protein Ferritin was found to be involved in the response to temperature stress, and the changes of total iron concentration in the hemolymph were, in general, consistent with the expression levels of Ferritin. Taken together, our results suggested that the stress response genes were involved in the defense against the heat stress at 40°C, and the immune responses triggered by cold stress might provide protection for larvae from cold stress at 8°C. More interestingly, our results showed that during the responses to temperature stress, the total iron concentration in hemolymph regulated by Ferritin increased, which might help O. furnacalis in surviving the low and high temperature stress.</p

    Data_Sheet_4_Transcription Analysis of the Stress and Immune Response Genes to Temperature Stress in Ostrinia furnacalis.xls

    No full text
    Ostrinia furnacalis is one of the most important pests on maize. O. furnacalis larvae are frequently exposed to the temperature challenges such as high temperature in summer and cold temperature in winter in the natural environment. High and low temperature stress, like any abiotic stress, impairs the physiology and development of insects. Up to now, there is limited information about gene regulation and signaling pathways related to the high and cold stress response in O. furnacalis. High-throughput sequencing of transcriptome provides a new approach for detecting stress and immune response genes under high and low temperature stresses in O. furnacalis. In the present study, O. furnacalis larvae were treated with the temperature at 8 and 40°C, and the responses of O. furnacalis larvae to the temperature stress were investigated through RNA-sequencing and further confirmation. The results showed that immune responses were up-regulated in larvae by the cold stress at 8°C while some stress response genes, such as HSP family, GST-2, Bax inhibitor and P450, were significantly increased at 40°C. Furthermore, quantitative real time polymerase chain reaction were performed to quantify the expression levels of immune related genes, such as PGRP-LB, antimicrobial peptides, lysozyme, serine protease and stress response genes such as small HSPs and HSP90, and the expression levels of these genes were similar to the RNA-seq results. In addition, the iron storage protein Ferritin was found to be involved in the response to temperature stress, and the changes of total iron concentration in the hemolymph were, in general, consistent with the expression levels of Ferritin. Taken together, our results suggested that the stress response genes were involved in the defense against the heat stress at 40°C, and the immune responses triggered by cold stress might provide protection for larvae from cold stress at 8°C. More interestingly, our results showed that during the responses to temperature stress, the total iron concentration in hemolymph regulated by Ferritin increased, which might help O. furnacalis in surviving the low and high temperature stress.</p

    Data_Sheet_3_Transcription Analysis of the Stress and Immune Response Genes to Temperature Stress in Ostrinia furnacalis.xlsx

    No full text
    Ostrinia furnacalis is one of the most important pests on maize. O. furnacalis larvae are frequently exposed to the temperature challenges such as high temperature in summer and cold temperature in winter in the natural environment. High and low temperature stress, like any abiotic stress, impairs the physiology and development of insects. Up to now, there is limited information about gene regulation and signaling pathways related to the high and cold stress response in O. furnacalis. High-throughput sequencing of transcriptome provides a new approach for detecting stress and immune response genes under high and low temperature stresses in O. furnacalis. In the present study, O. furnacalis larvae were treated with the temperature at 8 and 40°C, and the responses of O. furnacalis larvae to the temperature stress were investigated through RNA-sequencing and further confirmation. The results showed that immune responses were up-regulated in larvae by the cold stress at 8°C while some stress response genes, such as HSP family, GST-2, Bax inhibitor and P450, were significantly increased at 40°C. Furthermore, quantitative real time polymerase chain reaction were performed to quantify the expression levels of immune related genes, such as PGRP-LB, antimicrobial peptides, lysozyme, serine protease and stress response genes such as small HSPs and HSP90, and the expression levels of these genes were similar to the RNA-seq results. In addition, the iron storage protein Ferritin was found to be involved in the response to temperature stress, and the changes of total iron concentration in the hemolymph were, in general, consistent with the expression levels of Ferritin. Taken together, our results suggested that the stress response genes were involved in the defense against the heat stress at 40°C, and the immune responses triggered by cold stress might provide protection for larvae from cold stress at 8°C. More interestingly, our results showed that during the responses to temperature stress, the total iron concentration in hemolymph regulated by Ferritin increased, which might help O. furnacalis in surviving the low and high temperature stress.</p
    corecore