27 research outputs found
Response of "Glacier-Runoff" system in a typical monsoonal temperate glacier region, Hailuogou Basin in Mt. Gongga of China, to global warming
International audienceThe method of correlation analysis and trend analysis were used in this research in order to confirm the response of "glacier-runoff" system to global warming. Hailuogou glacier had retreated by 1871.8 m over the past 76 years, Hailuogou No. 2 glacier had also retreated by 1100 m. Glaciers retreats are contrary to the climatic warming trend in China and the Northern Hemisphere. Glaciers in Hailuogou basin were in the loss with a fluctuating manner since 1950s, and accumulative value of mass balance is ?10 825.5 mm water equivalent with an annual mean value of ?240.6 mm. The inverse correlation is highly significant between mass balance variation and climatic fluctuation of China and the Northern Hemisphere after 1950s. Glacier ablation is intensive with a ratio of 7.86 m yr?1. A steady rise tendency toward glaciers runoff has been observed since 1980s, and the runoff rise is mainly responsible for melt water in Hailuogou basin. It is noticeable that climatic warming not only strengthened ablation extent and enlarged ablation area, but also prolonged ablation period. Global warming is the main cause of glacier retreat, mass loss and runoff rise in Hailuogou basin
Effect of Heat Processing on the Functional Properties of Myosin in Three Kinds of Hairtail
Changes in the functional properties of myosin and the tissue microstructure of hooked, trawl-netted, and radar-netted hairtail (Trichiurus haumela) were investigated under different heating temperatures. Hairtails were water bathed at 30, 50, 70 or 90 ℃ and evaluated for cooking loss and water-holding capacity (WHC) as well as myosin turbidity, solubility, emulsifying capacity, foaming capacity and foam stability, and carbonyl content after 10 min. Besides, hematoxylin-eosin (HE) staining was used to analyze the effects of different heating temperatures on the tissue microstructure of hairtails. The results showed that as the heating temperature rose, the cooking loss and water-holding capacity of muscle decreased gradually for the three kinds of hairtail. Myosin turbidity and carbonyl content increased, and solubility, emulsifying activity index (EAI) and emulsion stability index (ESI), foaming capacity and foam stability decreased continuously. The decrease in muscle WHC and myosin solubility and the increase in myosin turbidity were all smaller in radar-netted hairtails than in the two other kinds. In addition, the HE staining results showed that with increasing heating temperature, the space between muscle fiber bundles in muscle tissues increased for all kinds of hairtail, and different degrees of breakage occurred. When the heating temperature was 50 ℃, the structure of collagen and muscle fibers was the most complete in the muscle tissue of radar-netted hairtail. Summarily, the muscle quality of all three kinds of hairtail decreased with the increase in heating temperature, and the muscle quality of radar-netted hairtail was the most stable
Metagenomics-based exploration of key soil microorganisms contributing to continuously planted Casuarina equisetifolia growth inhibition and their interactions with soil nutrient transformation
Casuarina equisetifolia (C. equisetifolia) is an economically important forest tree species, often cultivated in continuous monoculture as a coastal protection forest. Continuous planting has gradually affected growth and severely restricted the sustainable development of the C. equisetifolia industry. In this study, we analyzed the effects of continuous planting on C. equisetifolia growth and explored the rhizosphere soil microecological mechanism from a metagenomic perspective. The results showed that continuous planting resulted in dwarfing, shorter root length, and reduced C. equisetifolia seedling root system. Metagenomics analysis showed that 10 key characteristic microorganisms, mainly Actinoallomurus, Actinomadura, and Mycobacterium, were responsible for continuously planted C. equisetifolia trees. Quantitative analysis showed that the number of microorganisms in these three genera decreased significantly with the increase of continuous planting. Gene function analysis showed that continuous planting led to the weakening of the environmental information processing-signal transduction ability of soil characteristic microorganisms, and the decrease of C. equisetifolia trees against stress. Reduced capacity for metabolism, genetic information processing-replication and repair resulted in reduced microbial propagation and reduced microbial quantity in the rhizosphere soil of C. equisetifolia trees. Secondly, amino acid metabolism, carbohydrate metabolism, glycan biosynthesis and metabolism, lipid metabolism, metabolism of cofactors and vitamins were all significantly reduced, resulting in a decrease in the ability of the soil to synthesize and metabolize carbon and nitrogen. These reduced capacities further led to reduced soil microbial quantity, microbial carbon and nitrogen, microbial respiration intensity, reduced soil enzyme nutrient cycling and resistance-related enzyme activities, a significant reduction in available nutrient content of rhizosphere soils, a reduction in the ion exchange capacity, and an impediment to C. equisetifolia growth. This study provides an important basis for the management of continuously planted C. equisetifolia plantations
Spatiotemporal Differentiation of Soil Organic Carbon of Grassland and Its Relationship with Soil Physicochemical Properties on the Northern Slope of Qilian Mountains, China
The soil organic carbon pool is an important part of the global carbon cycle, and its accumulation and decomposition affect the balance of the global carbon cycle. It is important to understand scientifically the temporal and spatial variation of soil organic carbon (SOC) and its influencing factors, which could aid further understanding of the accumulation and decomposition of SOC. In order to reveal the relationship between soil organic carbon and soil’s physicochemical properties, six plots were selected on the east, middle and west of forest steppes and typical grasslands on the northern slope of Qilian Mountains during two consecutive growing seasons from 2013 to 2014. Soil samples under 0–30 cm were used to study the spatiotemporal differentiation of SOC and its relationship with the soil’s physicochemical properties in the grassland of the study area. The results show that the content of SOC in the grassland in 2013 was higher than that in 2014, and that it decreased gradually from east to west. The content of SOC is significantly different between the soil layer of 0–10 cm and the soil layers of 10–20 cm and 20–30 cm (p < 0.05), and it decreases with increases in soil depth. The SOC content on forest steppe is higher than that on typical grassland. Significant positive correlations appear between SOC with soil water content and soil nutrients (alkaline nitrogen, available phosphorus, available potassium) (p < 0.01), but there are significant negative correlations between SOC and soil temperature, soil pH, and soil electrical conductivity (p < 0.01)
Reservoir characteristics and main controlling factors of the fourth member of Ordovician Majiagou Formation in the central and eastern Ordos Basin
Recent exploration practice shows that the leopard porphyry dolomite reservoir in the fourth member of Ordovician Majiagou Formation in the central and eastern Ordos Basin has good exploration and development potential. Therefore, based on drilling cores, rock slices and analysis and laboratory data, the reservoir characteristics and main controlling factors of this section were analyzed. The results show that: (1) The reservoir rocks of the fourth member of Majiagou Formation mainly include leopard porphyry dolomitic limestone, leopard porphyry limy dolomite, crystalline dolomite and clotted dolomite, and the reservoir space types mainly consist of intergranular (dissolution) pores, with a small amount of lattice pores and microcracks. (2) The reservoir in the study area is generally characte-rized by low porosity and medium-low permeability pore type reservoir, in which leopard porphyry limestone dolomite and crystalline dolomite are the best reservoir rocks with wide distribution range. However, leopard porphyry dolomitic limestone is developed on a large scale, with poor reservoir performance as a whole, while clotted dolomite has good reservoir performance, but its development frequency is low. The reservoir development in the fourth member of Majiagou Formation in the central and eastern Ordos Basin is mainly controlled by sedimentary microfacies, bioturbation, dolomitization and early diagenetic karstification: as the material basis for reservoir formation, favorable sedimentary microfacies control the horizontal distribution of reservoirs; bioturbation is for dolomitization; dolomitization is the key to reservoir formation, which is conducive to the preservation of reservoir pores; early diagenetic karstification has an important contribution to the improvement of reservoir quality. In the longitudinal, the favorable reservoirs in the fourth member of Majiagou Formation are mainly located in the middle-upper part of the high-frequency upward shallowing sequence; on the plane, the favorable reservoirs are mainly concentrated in the line of Wushen Banner-Jingbian-Zhidan in the west and the two relatively independent areas of Shenmu and Mizhi in the east of the study area
Neutrophil-lymphocyte ratio as a predictive marker for postoperative infectious complications: A systematic review and meta-analysis
Objective: Postoperative infection is a common but costly complication. The neutrophil-lymphocyte ratio is a promising marker for the identification of postsurgical infectious events. We aimed to perform this meta-analysis to assessed the accuracy of the neutrophil-lymphocyte ratio for the prediction of postsurgical infection. Methods: We searched PubMed, Embase, Web of Science, and Cochrane Library without language restriction from their inceptions to April 2022, and checked reference lists of included studies. Studies were included if they assessed predictive accuracy of neutrophil-lymphocyte ratio for postsurgical infection. We estimated its predictive value and explored the source of heterogeneity. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool was used to assess methodological quality and the Deeks’ test to evaluate publication bias. The bivariate model and hierarchical summary receiver operating characteristic (HSROC) curve were used for meta-analysis and generated a summary receiver operating characteristic space (ROC) curve. Results: Our search returned 379 reports, of which 12 fulfilled the inclusion criteria, accounting for 4375 cases. The bivariate analysis yielded a pooled sensitivity of 0.77 (95%C.I.: 0.65–0.85) and specificity of 0.78 (95%C.I.: 0.67–0.86). Pooled positive LR and negative LR were 3.48 (95%C.I.: 2.26–5.36) and 0.30 (95%C.I.: 0.20–0.46), respectively. A negative LR of 0.30 reduces the post-test probability to 2% for a negative test result. The area under of receiver operating characteristic curve was 0.84 (95%C.I.: 0.80–0.87). Subgroups comparisons revealed difference by study design, surgical site, presentence of implant, time of sampling, type of infection event and prevalence of infection. The Deeks’ test showed no publication bias. The sensitivity analysis showed no study affected the robustness of combined results. Conclusions: Low-certainty evidence suggests that the neutrophil-lymphocyte ratio is a helpful marker for predicting postoperative infectious complication. The negative predictive value of the neutrophil-lymphocyte ratio enables for reliable exclusion of postoperative infection.Trial registrationPROSPERO registration number CRD42022321197. Registered on 27 April 2022
Viral hepatitis E: Clinical manifestations, treatment, and prevention
Hepatitis E is a globally distributed infection that varies in seroprevalence between developed and developing regions. In the less developed regions of Asia and Africa, a high seropositivity rate has been reported for hepatitis E virus (HEV) antibodies. Although acute hepatitis E is often self-limited and has a favorable prognosis, some populations experience severe manifestations, which may progress to liver failure. Moreover, some immunocompromised patients are at risk of developing chronic HEV infection and cirrhosis. Proactive screening, reducing misdiagnosis, improving patient management, timely antiviral therapy for severe and chronic cases, and vaccination of high-risk groups are important measures to reduce the morbidity of hepatitis E. This review focused on the clinical presentation, management, and prevention of hepatitis E
Influence of Sub-Cloud Secondary Evaporation and Moisture Sources on Stable Isotopes of Precipitation in Shiyang River Basin, Northwest China
Fractionation of stable isotopes in precipitation runs through the water cycle, and deuterium excess is a second-order parameter linking water-stable oxygen and hydrogen isotopes. It is strongly influenced by under-cloud evaporation in unsaturated air, especially in arid climates. Based on the improved Stewart model, this study used 670 precipitation stable isotope data and measured meteorological element data from 11 sampling points from January 2018 to September 2019 to verify the existence of sub-cloud secondary evaporation in the Shiyang river basin and quantitatively calculate the intensity of sub-cloud secondary evaporation and its influence on precipitation stable isotopes. The study used the vapor flux and the improved Lagrangian model to track the moisture source of precipitation and analyze the influence of the moisture source of different paths on the stable isotopes of precipitation. Therefore, this study is helpful to understand the evapotranspiration loss mechanism and recharge mechanism of moisture in the watershed. The results showed that there is sub-cloud secondary evaporation in the Shiyang River Basin, and from the seasonal scale, the sub-cloud secondary evaporation is stronger in spring and summer, but weaker in autumn and winter, which makes heavy isotopes enriched in spring and summer and depleted in autumn and winter. From the perspective of spatial distribution, the sub-cloud secondary evaporation is stronger in the midstream and downstream of the Shiyang river, resulting in more enrichment of heavy isotopes. In the vertical direction, the sub-cloud secondary evaporation at 850–700 hPa is the strongest, which enriches the heavy isotope in this layer and reduces the deuterium excess. In addition, the main moisture source of precipitation in the Shiyang River Basin is the westerly air mass, and the mid and high-latitude land sources contribute more moisture to the precipitation. However, the supply of the sea source is very limited, which makes the deuterium excess of precipitation higher and does not show regional consistency and seasonality well