8 research outputs found

    Optimal Signaling of MISO Full-Duplex Two-Way Wireless Channel

    Full text link
    We model the self-interference in a multiple input single output (MISO) full-duplex two-way channel and evaluate the achievable rate region. We formulate the boundary of the achievable rate region termed as the Pareto boundary by a family of coupled, non-convex optimization problems. Our main contribution is decoupling and reformulating the original non-convex optimization problems to a family of convex semidefinite programming problems. For a MISO full-duplex two-way channel, we prove that beamforming is an optimal transmission strategy which can achieve any point on the Pareto boundary. Furthermore, we present a closed-form expression for the optimal beamforming weights. In our numerical examples we quantify gains in the achievable rates of the proposed beamforming over the zero-forcing beamforming.Comment: To appear in IEEE ICC 2015, London, U

    Signaling Design of Two-Way MIMO Full-Duplex Channel: Optimality Under Imperfect Transmit Front-End Chain

    No full text

    Angelicin impedes the progression of glioblastoma via inactivation of YAP signaling pathway

    No full text
    Glioblastoma (GBM) is a human malignant tumor with low survival and high recurrence rate. Angelicin, an active furanocoumarin compound, has been reported to possess potential antitumor activity towards various malignancies. However, the effect of angelicin on GBM cells and its mechanism are still unclear. In this study, we found that angelicin inhibited the proliferation of GBM by inducing the cell cycle arrested in G1 phase and suppressed the migration of GBM cells in vitro. Mechanically, we found that angelicin downregulated the expression of YAP and decreased the nuclear localization of YAP, and suppressed the expression of β-catenin. Furthermore, overexpression of YAP partially restored the inhibitory effect of angelicin on GBM cells in vitro. Finally, we found that angelicin could inhibit the growth of tumor and reduce the expression of YAP in the subcutaneous xenograft model of GBM in nude mice and the syngeneic intracranial orthotopic model of GBM in C57BL/6 mice. Taken together, our results suggest that the natural product angelicin exerts its anticancer effects on GBM via YAP signaling pathway, and is expected to be a promising compound for the treatment of GBM

    Altered resting-state dynamic functional brain networks in major depressive disorder: Findings from the REST-meta-MDD consortium

    No full text
    Background: Major depressive disorder (MDD) is known to be characterized by altered brain functional connectivity (FC) patterns. However, whether and how the features of dynamic FC would change in patients with MDD are unclear. In this study, we aimed to characterize dynamic FC in MDD using a large multi-site sample and a novel dynamic network-based approach. Methods: Resting-state functional magnetic resonance imaging (fMRI) data were acquired from a total of 460 MDD patients and 473 healthy controls, as a part of the REST-meta-MDD consortium. Resting-state dynamic functional brain networks were constructed for each subject by a sliding-window approach. Multiple spatio-temporal features of dynamic brain networks, including temporal variability, temporal clustering and temporal efficiency, were then compared between patients and healthy subjects at both global and local levels. Results: The group of MDD patients showed significantly higher temporal variability, lower temporal correlation coefficient (indicating decreased temporal clustering) and shorter characteristic temporal path length (indicating increased temporal efficiency) compared with healthy controls (corrected p < 3.14 x 10(-3)). Corresponding local changes in MDD were mainly found in the default-mode, sensorimotor and subcortical areas. Measures of temporal variability and characteristic temporal path length were significantly correlated with depression severity in patients (corrected p < 0.05). Moreover, the observed between-group differences were robustly present in both first-episode, drug-naive (FEDN) and non-FEDN patients. Conclusions: Our findings suggest that excessive temporal variations of brain FC, reflecting abnormal communications between large-scale bran networks over time, may underlie the neuropathology of MDD