407 research outputs found

    The Flash ADC system and PMT waveform reconstruction for the Daya Bay Experiment

    Full text link
    To better understand the energy response of the Antineutrino Detector (AD), the Daya Bay Reactor Neutrino Experiment installed a full Flash ADC readout system on one AD that allowed for simultaneous data taking with the current readout system. This paper presents the design, data acquisition, and simulation of the Flash ADC system, and focuses on the PMT waveform reconstruction algorithms. For liquid scintillator calorimetry, the most critical requirement to waveform reconstruction is linearity. Several common reconstruction methods were tested but the linearity performance was not satisfactory. A new method based on the deconvolution technique was developed with 1% residual non-linearity, which fulfills the requirement. The performance was validated with both data and Monte Carlo (MC) simulations, and 1% consistency between them has been achieved

    Spatial Pattern of Transportation Carbon Emission based on Behavior Zones: Evidence from Beijing,China.

    Get PDF
    Reducing daily transportation carbon emission is one of themain tasksfor accomplishing low carbon city. Most existing studies have evaluated transportation carbon emission from industrial structure or micro-economic viewpoint, such as the efficiency of public transportation, work and home relationship, and modalchoiceof personal trips, but studies on the general impact of personal behaviors on transportation carbon emission is inadequate. A main reason of this relies on thelack of an appropriate spatial unit for integrating people’s greatlydiversifiedbehaviors. This study proposes the concept of ‘behavior zone’(BZ) based on homogeneous assumption of behaviors, in order to analyze people’s traffic behavior and its carbon emission effect by sub-areas. With a survey analysis of the characteristics of people’s daily trips in Beijing’s sample residential areas, the critical indices of BZ are identified including housing price, development intensity and population density, and access to public transportation. With these indices, Beijing is classified into five BZ types, where the modal choice behaviors of inhabitants are projected. Then the total environmental impact of daily trips is estimated based on carbon emission levels of various traffic modes. The results provide a plenty of implications for low carbon strategies such as intensity control by floor-area-ratios and household densities, and adjustment of public transportation services

    The cosmic ray test of MRPCs for the BESIII ETOF upgrade

    Full text link
    In order to improve the particle identification capability of the Beijing Spectrometer III (BESIII),t is proposed to upgrade the current endcap time-of-flight (ETOF) detector with multi-gap resistive plate chamber (MRPC) technology. Aiming at extending ETOF overall time resolution better than 100ps, the whole system including MRPC detectors, new-designed Front End Electronics (FEE), CLOCK module, fast control boards and time to digital modules (TDIG), was built up and operated online 3 months under the cosmic ray. The main purposes of cosmic ray test are checking the detectors' construction quality, testing the joint operation of all instruments and guaranteeing the performance of the system. The results imply MRPC time resolution better than 100psps, efficiency is about 98%\% and the noise rate of strip is lower than 1Hz/Hz/(scm2scm^{2}) at normal threshold range, the details are discussed and analyzed specifically in this paper. The test indicates that the whole ETOF system would work well and satisfy the requirements of upgrade

    A Study of the Latest Updates of the Readout System for the Hybird-Pixel Detector at HEPS

    Full text link
    The High Energy Photon Source (HEPS) represents a fourth-generation light source. This facility has made unprecedented advancements in accelerator technology, necessitating the development of new detectors to satisfy physical requirements such as single-photon resolution, large dynamic range, and high frame rates. Since 2016, the Institute of High Energy Physics has introduced the first user-experimental hybrid pixel detector, progressing to the fourth-generation million-pixel detector designed for challenging conditions, with the dual-threshold single-photon detector HEPS-Beijing PIXel (HEPS-BPIX) set as the next-generation target. HEPS-BPIX will employ the entirely new Application-Specific Integrated Circuit (ASIC) BP40 for pixel information readout. Data flow will be managed and controlled through readout electronics based on a two-tier Field-Programmable Gate Array (FPGA) system: the Front-End Electronics (FEE) and the Input-Output Board (IOB) handle the fan-out for 12 ASICs, and the u4FCP is tasked with processing serial data on high-speed links, transferring pixel-level data to the back-end RTM and uTCA chassis, or independently outputting through a network port, enabling remote control of the entire detector. The new HEPS-BPIX firmware has undergone a comprehensive redesign and update to meet the electronic characteristics of the new chip and to improve the overall performance of the detector. We provide an overview of the core subunits of HEPS-BPIX, emphasizing the readout system, evaluating the new hardware and firmware, and highlighting some of its innovative features and characteristics

    System Design and Optimisation Study on a Novel CCHP System Integrated with a Hybrid Energy Storage System and an ORC

    Get PDF
    For achieving higher energy transferring efficiency from the resources to the load, the Combined Cooling, Heating, and Power (CCHP) systems have been widely researched and applied as an efficient approach. The key idea of this study is designing a novel structure of a hybrid CCHP system and evaluating its performance. In this research, there is a hybrid energy storage unit enhancing the whole system’s operation flexibility while supplying cooling, heating, and power. An ORC system is integrated into the CCHP system which takes responsibility of absorbing the low-temperature heat source for electricity generation. There are a few research studies focusing on the CCHP systems’ performance with this structure. In order to evaluate the integrated system’s performance, investigation and optimisation work has been conducted with the approaches of experimental studies and modelling simulation. The integrated system’s configuration, the model building process of several key components, the optimisation method, and the case studies are discussed and analysed in this study. The design of the integrated system and the control strategy are displayed in detail. Several sets of dynamic energy demand profiles are selected to evaluate the performance of the integrated system. The simulation study of the system supplying selected scenarios of loads is conducted. A comprehensive evaluation report indicates that the system’s efficiency during each study process differs while supplying different loads. The results include the power supplied by each component, the energy consumed by each type of load, and the efficiency improvements. It is found that the integrated system fully satisfies the selected domestic loads and various selected scenarios of loads with high efficiency. Compared to conventional power plants or CHP systems, the system efficiency enhancement comes from higher amount of recovery waste heat. Especially, the ORC system can absorb the low-temperature heat source for electricity generation. Compared to the original following electrical load (FEL) control strategy, the optimisation process brings overall efficiency improvements. The system’s overall efficiency was increased by from 3%, 3.18%, 2.85%, 17.11%, 8.89%, and 21.7% in the second case studies. Through the whole study, the main challenge lies within the design and the energy management of the integrated system

    Oncogenic HER2 fusions in gastric cancer

    Get PDF
    BACKGROUND: Genetic amplification of HER2 drives tumorigenesis and cancer progression in a subset of patients with gastric cancer (GC), and treatment with trastuzumab, a humanized HER2-neutralizing antibody, improves the overall survival rate of HER2-positive patients. However, a considerable portion of the patients does not respond to trastuzumab and the molecular mechanisms underlying the intrinsic resistance to anti-HER2 therapy in GC is not fully understood. METHODS: We performed whole-transcriptome sequencing on 21 HER2-positive tumor specimens from Chinese GC patients. Whole genome sequencing was performed on the three samples with HER2 fusion to discover the DNA integration structure. A multicolor FISH assay for HER2 split screening was conducted to confirm HER2 fusion and IHC (HercepTest™) was used to detect the membranous expression of HER2. Fusion cDNA were transfected into NIH/3T3 cells and generate stable cell line by lentivirus. The expression of exogenous HER2 fusion proteins and pHER2 were examined by western blot analysis. In vitro efficacy studies were also conducted by PD assay and softagar assay in cell line expression wild type and fusion HER2. T-DM1 was used to assess its binding to NIH/3T3 cells ectopically expressing wild-type and fusion HER2. Finally, the anti-tumor efficacy of trastuzumab was tested in NIH/3 T3 xenografts expressing the HER2 fusion variants. RESULTS: We identified three new HER2 fusions with ZNF207, MDK, or NOS2 in 21 HER2-amplified GC samples (14%; 3/21). Two of the fusions, ZNF207-HER2, and MDK-HER2, which are oncogenic, lead to aberrant activation of HER2 kinase. Treatment with trastuzumab inhibited tumor growth significantly in xenografts expressing MDK-HER2 fusion. In contrast, trastuzumab had no effect on the growth of xenografts expressing ZNF207-HER2 fusion, due to its inability to bind to trastuzumab. CONCLUSIONS: Our results provide the molecular basis of a novel resistance mechanism to trastuzumab-based anti-HER2 therapy, supporting additional molecule stratification within HER2-positive GC patients for more effective therapy options. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-015-0476-2) contains supplementary material, which is available to authorized users

    Whole-cell response of coronavirus-infected BMDCs through proteomic and transcriptomic analyses

    Get PDF
    IntroductionUnderstanding the intricacies of the host inflammatory response to coronaviruses is essential for developing effective therapeutic strategies to mitigate the severe consequences of these infections. Various coronaviruses can trigger the host immune response, leading to highly similar inflammatory reactions. The mouse hepatitis virus (MHV), which belongs to the same group of beta-coronaviruses as SARS-CoV-2 and induces high pathogenicity in mice, typically serves as a safety model for investigating highly pathogenic coronavirus infections, replication, and virus-host interactions.MethodsIn this study, we conducted a comprehensive analysis of the transcriptome and proteome of mouse bone marrow dendritic cells (BMDCs) infected with MHV.ResultsWe characterized the global gene changes at both the mRNA and protein levels following viral infection, identifying ten genes involved in various anti-MHV biological processes. Furthermore, by integrating our findings with relevant published data on SARS-CoV-2 infection in cells, we observed significant similarities in the responses to MHV and SARS-CoV-2, particularly regarding immune and inflammatory responses.DiscussionThese findings underscore how our research enhances the understanding of global gene expression alterations during coronavirus infection and facilitates the identification of novel antiviral targets
    corecore