559 research outputs found

    Gaussian benchmark for optical communication aiming towards ultimate capacity

    Get PDF
    We establish the fundamental limit of communication capacity within Gaussian schemes under phase-insensitive Gaussian channels, which employ multimode Gaussian states for encoding and collective Gaussian operations and measurements for decoding. We prove that this Gaussian capacity is additive, i.e., its upper bound occurs with separable encoding and separable receivers so that a single-mode communication suffices to achieve the largest capacity under Gaussian schemes. This rigorously characterizes the gap between the ultimate Holevo capacity and the capacity within Gaussian communication, showing that Gaussian regime is not sufficient to achieve the Holevo bound particularly in the low-photon regime. Furthermore the Gaussian benchmark established here can be used to critically assess the performance of non-Gaussian protocols for optical communication. We move on to identify non-Gaussian schemes to beat the Gaussian capacity and show that a non-Gaussian receiver recently implemented by Becerra et al. [Nat. Photon. 7, 147 (2013)] can achieve this aim with an appropriately chosen encoding strategy.Comment: 9 pages, 6 figures, with supplemental materia

    Increasing and decreasing entanglement characteristics for continuous variables by a local photon subtraction

    Get PDF
    We investigate how the entanglement characteristics of a non-Gaussian entangled state are increased or decreased by a local photon subtraction operation. The non-Gaussian entangled state is generated by injecting a single-mode non-Gaussian state and a vacuum state into a 50:50 beam splitter. We consider a photon-added coherent state and an odd coherent state as a single-mode non-Gaussian state. In the regime of small amplitude, we show that the performance of quantum teleportation and the second-order Einstein-Podolsky- Rosen-type correlation can both be enhanced, whereas the degree of entanglement decreases, for the output state when a local photon subtraction operation is applied to the non-Gaussian entangled state. The counterintuitive effect is more prominent in the limit of nearly zero amplitude.Comment: Published version, 7 pages, 3 figure

    Continuous-variable dense coding via a general Gaussian state: Monogamy relation

    Get PDF
    We study a continuous variable (CV) dense-coding protocol, originally proposed to employ a two-mode squeezed state, using a general two-mode Gaussian state as a quantum channel. We particularly obtain conditions to manifest quantum advantage by beating two well-known single-mode schemes, namely, the squeezed-state scheme (best Gaussian scheme) and the number-state scheme (optimal scheme achieving the Holevo bound). We then extend our study to a multipartite Gaussian state and investigate the monogamy of operational entanglement measured by the communication capacity under the dense-coding protocol. We show that this operational entanglement represents a strict monogamy relation, by means of Heisenberg's uncertainty principle among different parties, i.e., the quantum advantage for communication can be possible for only one pair of two-mode systems among many parties

    Classical capacity of Gaussian communication under a single noisy channel

    Get PDF
    A long-standing problem on the classical capacity of bosonic Gaussian channels has recently been resolved by proving the minimum output entropy conjecture. It is also known that the ultimate capacity quantified by the Holevo bound can be achieved asymptotically by using an infinite number of channels. However, it is less understood to what extent the communication capacity can be reached if one uses a finite number of channels, which is a topic of practical importance. In this paper, we study the capacity of Gaussian communication, i.e., employing Gaussian states and Gaussian measurements to encode and decode information under a single-channel use. We prove that the optimal capacity of single-channel Gaussian communication is achieved by one of two well-known protocols, i.e., coherent-state communication or squeezed-state communication, depending on the energy (number of photons) as well as the characteristics of the channel. Our result suggests that the coherent-state scheme known to achieve the ultimate information-theoretic capacity is not a practically optimal scheme for the case of using a finite number of channels. We find that overall the squeezed-state communication is optimal in a small-photon-number regime whereas the coherent-state communication performs better in a large-photon-number regime.Comment: 9 pages, 4 figures, published versio

    Gaussian states under coarse-grained continuous variable measurements

    Get PDF
    The quantum-to-classical transition of a quantum state is a topic of great interest in fundamental and practical aspects. A coarse-graining in quantum measurement has recently been suggested as its possible account in addition to the usual decoherence model. We here investigate the reconstruction of a Gaussian state (single mode and two modes) by coarse-grained homodyne measurements. To this aim, we employ two methods, the direct reconstruction of the covariance matrix and the maximum likelihood estimation (MLE), respectively, and examine the reconstructed state under each scheme compared to the state interacting with a Gaussian (squeezed thermal) reservoir. We clearly demonstrate that the coarse-graining model, though applied equally to all quadrature amplitudes, is not compatible with the decoherence model by a thermal (phase-insensitive) reservoir. Furthermore, we compare the performance of the direct reconstruction and the MLE methods by investigating the fidelity and the nonclassicality of the reconstructed states and show that the MLE method can generally yield a more reliable reconstruction, particularly without information on a reference frame (phase of input state).Comment: published version, 9 pages, 5 figure

    Steering Criteria via Covariance Matrices of Local Observables in Arbitrary Dimensional Quantum Systems

    Get PDF
    We derive steerability criteria applicable for both finite and infinite dimensional quantum systems using covariance matrices of local observables. We show that these criteria are useful to detect a wide range of entangled states particularly in high dimensional systems and that the Gaussian steering criteria for general M x N-modes of continuous variables are obtained as a special case. Extending from the approach of entanglement detection via covariance matrices, our criteria are based on the local uncertainty principles incorporating the asymmetric nature of steering scenario. Specifically, we apply the formulation to the case of local orthogonal observables and obtain some useful criteria that can be straightforwardly computable, and testable in experiment, with no need for numerical optimization.Comment: 6 pages with further "Remarks" and "Acknowledgement" adde

    Monogamy relation in multipartite continuous-variable quantum teleportation

    Get PDF
    Quantum teleportation (QT) is a fundamentally remarkable communication protocol that also finds many important applications for quantum informatics. Given a quantum entangled resource, it is crucial to know to what extent one can accomplish the QT. This is usually assessed in terms of output fidelity, which can also be regarded as an operational measure of entanglement. In the case of multipartite communication when each communicator possesses a part of NN-partite entangled state, not all pairs of communicators can achieve a high fidelity due to monogamy property of quantum entanglement. We here investigate how such a monogamy relation arises in multipartite continuous-variable (CV) teleportation particularly using a Gaussian entangled state. We show a strict monogamy relation, i.e. a sender cannot achieve a fidelity higher than optimal cloning limit with more than one receiver. While this seems rather natural owing to the no-cloning theorem, a strict monogamy relation still holds even if the sender is allowed to individually manipulate the reduced state in collaboration with each receiver to improve fidelity. The local operations are further extended to non-Gaussian operations such as photon subtraction and addition, and we demonstrate that the Gaussian cloning bound cannot be beaten by more than one pair of communicators. Furthermore we investigate a quantitative form of monogamy relation in terms of teleportation capability, for which we show that a faithful monogamy inequality does not exist.Comment: 10 pages, 6 figures, published versio

    Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition

    Get PDF
    We investigate how the entanglement properties of a two-mode state can be improved by performing a coherent superposition operation of photon subtraction and addition, proposed by Lee and Nha [Phys. Rev. A 82, 053812 (2010)], on each mode. We show that the degree of entanglement, the EPR-type correlation, and the performance of quantum teleportation can be all enhanced for the output state when the coherent operation is applied to a two-mode squeezed state. The effects of the coherent operation are more prominent than those of the mere photon subtraction and the addition particularly in the small squeezing regime, whereas the optimal operation becomes the photon subtraction in the large-squeezing regime.Comment: 6 pages, 6 figures, published versio
    • …
    corecore